Annotatsiya. Mazkur maqolada konvolyutsion neyron tarmoq (CNN) algoritmlari tahlil qilinib, ularning kompyuter ko‘rish sohasida, xususan, avtomatlashtirilgan yo‘l aniqlash tizimlarida qo‘llanilishi o‘rganiladi. Asosiy e’tibor CNN arxitekturasining tuzilmasi, ishlash tamoyillari va tasvirni segmentatsiya qilishdagi imkoniyatlariga qaratildi. Ushbu ish natijasida sun’iy intellekt texnologiyalariga asoslangan yo‘l aniqlash tizimini ishlab chiqishning nazariy va amaliy jihatlari yoritiladi hamda real vaqt rejimida ishlay oladigan tizimni yaratish bo‘yicha takliflar ishlab chiqiladi.
Annotatsiya. Mazkur maqolada konvolyutsion neyron tarmoq (CNN) algoritmlari tahlil qilinib, ularning kompyuter ko‘rish sohasida, xususan, avtomatlashtirilgan yo‘l aniqlash tizimlarida qo‘llanilishi o‘rganiladi. Asosiy e’tibor CNN arxitekturasining tuzilmasi, ishlash tamoyillari va tasvirni segmentatsiya qilishdagi imkoniyatlariga qaratildi. Ushbu ish natijasida sun’iy intellekt texnologiyalariga asoslangan yo‘l aniqlash tizimini ishlab chiqishning nazariy va amaliy jihatlari yoritiladi hamda real vaqt rejimida ishlay oladigan tizimni yaratish bo‘yicha takliflar ishlab chiqiladi.
| № | Муаллифнинг исми | Лавозими | Ташкилот номи |
|---|---|---|---|
| 1 | Davronov S.R. | texnika fanlari bo‘yicha falsafa doktori, dotsent, | Qarshi davlat universiteti, |
| 2 | Rayimova A.R. | magistrant, | Qarshi davlat universiteti, |
| № | Ҳавола номи |
|---|---|
| 1 | Szeliski, R. (2022). Computer Vision: Algorithms and Applications. Springer. ISSN-1868 0941. https://doi.org/10.1007/978-3-030-34372-9 |
| 2 | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. The MIT Press, 2016, 800 pp, ISBN: 0262035618. DOI:10.1007/s10710-017-9314-z |
| 3 | Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. |
| 4 | Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. Deep Learning for Computer Vision: A Brief Review. Volume 2018, Article ID 7068349, 13 pages, https://doi.org/10.1155/2018/7068349. |
| 5 | Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767. |
| 6 | He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE ICCV. |
| 7 | R. Sharma, R. B. Pachori, and P. Sircar, (2020). “Automated emotion recognition based on higher-order statistics and deep learning algorithm,” Biomedical Signal Processing and Control, vol. 58, p. 101867. |
| 8 | Zhongqin Bi,·Ling Yu, Honghao Gao, Ping Zhou, Hongyang Yao. (2021) Improved VGG model‑based efficient traffic sign recognition for safe driving in 5G scenarios. International Journal of Machine Learning and Cybernetics 12(3). DOI:10.1007/s13042-020-01185-5 |
| 9 | A. Almalaq and G. Edwards. (2017). “A review of deep learning methods applied on load forecasting,” in Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, pp. 511–516. doi: 10.1109/ICMLA.2017.0-110 |
| 10 | K. Simonyan and A. Zisserman, (2014) “Very deep convolutional networks for large-scale image recognition,” Computer Science, arXiv preprint arXiv:1409.1556. |
| 11 | Alexander Wong, Mohammad Javad Shafiee, Michael St. Jules. (2018) MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-Time Embedded Traffic Sign Classification. DOI:10.1109/ACCESS.2018.2873948 |