The article discusses the modeling of a fuzzy-logical system of regulation of the process of
drying of raw cotton. The tasks of overcoming uncertainties arising in the process of operation
of technological units at the enterprises of the cotton-cleaning industry are presented. An
example of solving such a problem by using an artificial neural network is given. Mathematical
models based on the neural network have been developed that are used to formalize the process
of drying raw cotton and determine the optimal tuned parameters of the fuzzy-logical PID
controller, allowing the fate of changing the operating modes of the technological units of the
drying drum. A method for determining the number of synoptic weights of artificial neural
networks is proposed, which minimizes the number of trainings and increases the speed of
management decisions. To train the neural network weights use the reverse spreading error
method. The range of variation of the regulator parameter is justified, taking into account the
features of the cotton drying process. As a result, the proposed model was used in the control
system of the drying process in terms of quality indicators, which led to an increase in the
accuracy of the technological process.
Maqolada paxta xomashyosi quritish jarayonini tartibga soluvchi noqan’iy-mantiqiy tizimni
modellashtirish masalalari ko'rib chiqilgan. Paxta tozalash sanoati korxonalarida texnologik
qurilmalarni ishlatish jarayonida yuzaga keladigan noaniqliklarni bartaraf etish vazifalari
taqdim etildi. Sun'iy neyron tarmoq orqali bunday muammolarni hal qilishning namunasi
berilgan. Neyron tarmog'iga asoslangan matematik modellar ishlab chiqildi, u xom paxtani
quritish jarayonini rasmiylashtirish va noqan’iy-mantiqiy PID kontrolatorining optimal
sozlangan parametrlarini aniqlash uchun ishlatiladi, bu esa quritish tamburining texnologik
qurilmalarining ish rejimlarini o'zgartirishga imkon beradi. Ishlab chiqilgan boshqaruv
qarorlarining tezligini oshirishda va masalalar sonini minimallashtirishda sun'iy neyron
tarmoqlarining sinoptik vaznlari sonini aniqlash usuli taklif etilgan. Neyron tarmoq’ining
vaznlarini taxlil qilish uchun teskari tarqalish xatosi usulidan foydalanilgan. Paxtani quritish
jarayonining xususiyatlarini hisobga olgan holda regulyator parametrlarini o'zgartirish
diapazoniga asoslanadi. Natijada, texnologik jarayoning aniqligi oshishiga olib keladigan sifat
ko'rsatkichlari bo'yicha quritish jarayonini boshqarish tizimida namunaviy taklif ishlatildi.
The article discusses the modeling of a fuzzy-logical system of regulation of the process of
drying of raw cotton. The tasks of overcoming uncertainties arising in the process of operation
of technological units at the enterprises of the cotton-cleaning industry are presented. An
example of solving such a problem by using an artificial neural network is given. Mathematical
models based on the neural network have been developed that are used to formalize the process
of drying raw cotton and determine the optimal tuned parameters of the fuzzy-logical PID
controller, allowing the fate of changing the operating modes of the technological units of the
drying drum. A method for determining the number of synoptic weights of artificial neural
networks is proposed, which minimizes the number of trainings and increases the speed of
management decisions. To train the neural network weights use the reverse spreading error
method. The range of variation of the regulator parameter is justified, taking into account the
features of the cotton drying process. As a result, the proposed model was used in the control
system of the drying process in terms of quality indicators, which led to an increase in the
accuracy of the technological process.
В статье рассматривается моделирование нечетко-логической системы
регулирования процессом сушки хлопка-сырца. Представлены задачи преодоления
неопределенностей, возникающие в процессе функционирования технологических
агрегатов на предприятиях хлопкоочистительной промышленности. Приведен пример
решения подобной задачи путем использования искусственной нейронной сети.
Техника фанлари ва инновация №2/2019 й. Technical science and innovation
220
Разработаны математические модели на базе нейронной сети, используемые для
формализации процесса сушки хлопка-сырца и определения оптимальных настроенных
параметров нечетко-логического ПИД- регулятора, позволяющие учесть изменения
режимов работы технологических агрегатов сушильного барабана. Предложен способ
определения количества синоптических весов искусственных нейронных сетей,
позволяющий минимизировать число обучений и увеличить быстродействия выработан
управленческих решений. Для обучение весов нейронной сети использовать метод
обратного распространяя ошибки. Обоснован диапазон изменения параметр
регулятора, учитывающий особенности процесса сушка хлопка. В результате была
использована предложенная модель в системе управления процессом сушки по
показателям качества, что привело к повышению точности поддержания
технологического процесса.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Yunusova S.T. | dotsent | TDTU |
№ | Ҳавола номи |
---|---|
1 | Cotton: World Statistics. Bulletin of the International Cotton Advisory Committee, NY, November 2015.http://www.ICAC.org.,http://www.USDA.gov 2. Rojkov. S.A., Ternova T.I., Edinovich M.B. Problemi avtomatizovanogo rozbrakuvannya tkanin. // Problemы legkoy i tekstilnoy promыshlennosti Ukrainы, 2004. №2(9), S.204-211. 3. Parpiev.A.R., Usmanqulov.A va boshq. Chigitli paxtani quritish,-T.,:“Fan va texnologiyalar”, 2009 y.B.34-36. 4. Zarubin V.S. Matematicheskoe modelirovanie v texnike- Moskva: izd. MVTU, 2003 g. S. 56-60 5. Paxta xom ashyosini quritish. Darslik Parpiev A., Axmatov- M. S., Usmonqulov A.B., Mo„minov M, - Toshkent, “CHo„lpon”, 2009 y. S 70-78. 6. Sinyavskaya E.D. Analiz tochnosti rabotы nechetkoy modeli i optimizatsiya ee parametrov na primere upravleniya temperaturoy v xlebopekarnoy kamere. // Materialы II Vserossiyskoy nauchno-prakticheskoy konferensii «Molodyoj, nauka, innovatsii»- Groznыy, 2013.S. 95-100. 7. Siddikov I. X., Setmetov N.U. Metodologicheskaya osnova i prinsipы sozdaniya kompyuternoy sistemы podderjki prinyatiya resheniy dlya xlopkoochistitelnыx zavodov // Problemы tekstilya. Tashkent .2008№1 S.11-14 8. Gostev V. I. Proektirovanie nechetkix regulyatorov dlya sistem avtomaticheskogo upravleniya – SPb.: BXV – Peterburg, 2011.- 416 s. 9. Pegat A. Nechetkoe modelirovanie i upravlenie. M.: Binom. Laboratoriya znaniy, 2009-798 s. 10. Yunusova. S.T. Nechetkaya model upravleniya texnologicheskimi parametrami teplogeneriruyuщix ustanovok.// Problemы energo - i resursosberejeniya -T,: 2017 g. № 3-4. S. 118-122 11. Alp Yanar T., Akyurek Z., 2011 Fuzzy model tuning using simulated annealing, Expert Systems with Applications.№38:8159-8169. 12. Mamatov A.Z. Modelirovanie texnologii sushki xlopka-sыrsa s selyu povыsheniya kachestvo volokna // Diss. Na soiskanie uchenoy stepeni. d.t.n. Tashkent. 1995g. S.248. 13.Igamberdiev X.Z. Issledovanie voprosov matematicheskogo modelirovaniya i upravleniya protsessom sushki xlopka – sыrsa: Avtoref. dis. kand.tex.nauk. –Tashkent: 1974. -26 s. 14. Polyakov K.A. Polyakov A.E. Reshenie zadachi optimizatsii energosberegayuщix rejimov tekstilnogo oborudovaniya. // Izv. Vuzov. Texnologiya tekstilnoy promыshlennosti, 2005. -№1. – s. 124-127. 15. Artыkov R.D. Povыshenie effektivnosti protsessa podgotovki xlopka k pererabotki putem optimizatsii temperaturnogo rejima sushki. // Diss. na soiskanie uchenoy stepeni kand. texn. Nauk Tashkent 1998. S.36. 16. Karsukova A. V. Intensifikatsiya sushki xlopka-sыrsa s primeneniem sushilnogo agenta vыsokoy vlajnosti i temperaturы: Dis. kand.tex.nauk. –Tashkent: 1984. -163s. 17. Xolmatov D.A., YUnusova S.T. Setmetov N.U.,Xujanazarov U.O. Software tool monitoring process of processing raw cotton. International Journal of Advanced Research in Science, Engineering and Technology Vol. 6, Issue 2 , March 2019. 18. S.T. YUnusova. Nechetkaya model upravleniya texnologicheskimi parametrami teplogeneriruyuщix ustanovok –«Problemы energo i resursosberejeniya».-Toshkent -№ 3-4,2017 g.118-122s. 19. YUnusova S.T. O formalizatsii kriteriya optimizatsii protsessa ochistki xlopka-sыrsa ToshDTU xabarlari .2013 y . №3- ,35-40. 20. Xolmatov D.A., Yunusova S.T. Setmetov N.U.,Xujanazarov U.O. Information and algorithmic technological monitoring system algorithmic processes processing of raw cotton. WCIS -2014., Eighth World Conference on Intelligent Sistems for Industrial Automatik..Toshkent .261-264bet. |