Ushbu maqolada O‘zbekiston iqlim sharoitida issiqxonada harorat va nisbiy namlik parametrlarini samarali boshqarish maqsadida tizimni identifikatsiyalash masalasi chiziqli ARX (AutoRegressive with eXogenous input) modeli asosida tadqiq etilgan. Mazkur tadqiqot ishida real vaqtli eksperimental o‘lchovlar asosida mikroiqlim parametrlari dinamikasini ifodalovchi matematik model qurish hamda ushbu model negizida avtomatik boshqaruv tizimining ilmiy asoslarini ishlab chiqish maqsad qilingan. O‘zbekistonda issiqxonalarning keng joriy etilishi, agrotexnologik jarayonlarning barqarorligini ta’minlash, energiya va suv resurslaridan tejamkor foydalanish hamda global iqlim o‘zgarishlariga moslashish zaruriyati ushbu tadqiqotning dolzarbligini belgilaydi. Tadqiqot metodologiyasi sifatida ARX model strukturasini tanlash, parametrlarni baholash va modelning adekvatligini tekshirishda MATLAB Toolbox vositalaridan foydalanildi. Olingan natijalar mikroiqlim parametrlarini aniq boshqarishga qaratilgan zamonaviy regulyatorlar ishlab chiqish uchun ilmiy-amaliy asos yaratadi. Modelning hisoblashdagi soddaligi, tezkorligi va real vaqtli tizimlarga integratsiyalash imkoniyati uni amaliy sharoitlarda, xususan, O‘zbekiston issiqxonalarida samarali qo‘llash imkonini beradi. Chiziqli ARX modelidan
foydalanish issiqxonalarda harorat va namlikni avtomatik boshqarish tizimlarining aniqligi hamda ishonchliligini oshirishda samarali yechim bo‘lishi asoslab berilgan.
Ushbu maqolada O‘zbekiston iqlim sharoitida issiqxonada harorat va nisbiy namlik parametrlarini samarali boshqarish maqsadida tizimni identifikatsiyalash masalasi chiziqli ARX (AutoRegressive with eXogenous input) modeli asosida tadqiq etilgan. Mazkur tadqiqot ishida real vaqtli eksperimental o‘lchovlar asosida mikroiqlim parametrlari dinamikasini ifodalovchi matematik model qurish hamda ushbu model negizida avtomatik boshqaruv tizimining ilmiy asoslarini ishlab chiqish maqsad qilingan. O‘zbekistonda issiqxonalarning keng joriy etilishi, agrotexnologik jarayonlarning barqarorligini ta’minlash, energiya va suv resurslaridan tejamkor foydalanish hamda global iqlim o‘zgarishlariga moslashish zaruriyati ushbu tadqiqotning dolzarbligini belgilaydi. Tadqiqot metodologiyasi sifatida ARX model strukturasini tanlash, parametrlarni baholash va modelning adekvatligini tekshirishda MATLAB Toolbox vositalaridan foydalanildi. Olingan natijalar mikroiqlim parametrlarini aniq boshqarishga qaratilgan zamonaviy regulyatorlar ishlab chiqish uchun ilmiy-amaliy asos yaratadi. Modelning hisoblashdagi soddaligi, tezkorligi va real vaqtli tizimlarga integratsiyalash imkoniyati uni amaliy sharoitlarda, xususan, O‘zbekiston issiqxonalarida samarali qo‘llash imkonini beradi. Chiziqli ARX modelidan
foydalanish issiqxonalarda harorat va namlikni avtomatik boshqarish tizimlarining aniqligi hamda ishonchliligini oshirishda samarali yechim bo‘lishi asoslab berilgan.
В статье рассматриваются вопросы идентификации системы при управлении параметрами температуры и относительной влажности воздуха в теплицах с учётом климатических условий Узбекистана. Исследование выполнено на основе линейной модели ARX (AutoRegressive with eXogenous input). Целью работы является построение математической модели, описывающей динамику параметров микроклимата на основе
данных реальных экспериментальных измерений, а также разработка научных основ автоматизированной системы управления на базе данной модели. Актуальность исследования определяется широким внедрением тепличных комплексов в Узбекистане, необходимостью обеспечения стабильности агротехнологических процессов, рационального использования энергетических и водных ресурсов, а также адаптации к глобальным изменениям климата. В качестве методологической основы выбрана структура ARX-модели с последующим оцениванием её параметров и проверкой адекватности с использованием инструментов MATLAB Tool-box. Полученные результаты формируют научно-практическую базу для разработки современных регуляторов, обеспечивающих точное управление параметрами микроклимата. Простота вычислений, высокая скорость
обработки данных и возможность интеграции модели в системы реального времени делают её эффективной для применения в практических условиях, в частности, в теплицах Узбекистана. Доказано, что использование линейной ARX-модели является результативным подходом для повышения точности и надёжности автоматизированных систем управления температурой и влажностью в теплицах.
This article investigates the system identification problem for the effective control of temperature and relative humidity in greenhouses under the climate conditions of Uzbekistan, using a linear ARX (AutoRegressive with eXogenous input) model. The aim of this study is to construct a mathematical model that describes the dynamics of microclimate parameters based on real-time experimental measurements and, on this basis, establish the scientific foundations of an automatic control system. The widespread adoption of greenhouses in Uzbekistan, the need to maintaine the stability of agrotechnological processes, efficient use of energy and water resources, andadaptation to global climate changes determine the relevance of this research. The ARX model structure was selected as the research methodology, and MATLAB Toolbox was used for parameter estimation and model adequacy verification. The obtained results provide a scientific and practical basis for the development of modern regulators to ensure precise control of microclimate parameters. The model’s computational simplicity, speed, and integration capability with real-time systems make it effective in practical applications, particularly in Uzbek greenhouses. The use of the linear ARX model is demonstrated as an effective solution to improving the accuracy and reliability of automated temperature and humidity control systems in greenhouses.
| № | Имя автора | Должность | Наименование организации |
|---|---|---|---|
| 1 | Abdullayev A.X. | texnika fanlari doktori, dotsent, Kadastr agentligi direktor o‘rinbosari, “Geoin- novatsiya markazi” DUK direktori | O‘zbekiston Respublikasi Iqtisodiyot va moliya vazirligi |
| 2 | Oraqov E.E. | Kadastr agentligi tayanch doktoranti, “Geoinnovatsiya markazi” DUK laboratoriya boshlig‘i | O‘zbekiston Respublikasi Iqtisodiyot va moliya vazirligi |
| № | Название ссылки |
|---|---|
| 1 | Adeyemi, O., Grove, I., Peets, S., & Domun, T. (2018). Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors, 18(3408). https://doi.org/10.3390/ s18103408 |
| 2 | Altes-Buch, Q., Quoilin, S., & Lemort, V. (2019, March). Greenhouses: A Modelica library for the simulation of greenhouse climate and energy systems. In Proceedings of the 13th International Modelica Conference (pp. 54). Regensburg, Germany. https://doi.org/10.3384/ecp19157533 |
| 3 | Arnaud, S. E., Calisti, M., & Polydoros, A. (2025). Data-driven greenhouse climate regulation in lettuce cultivation using BiLSTM and GRU predictive control. Computers and Electronics in Agriculture, 215, 108417. https://doi.org/10.1016/j.compag.2025.108417 |
| 4 | Chen, S., Liu, A., Tang, F., Hou, P., Lu, Y., & Yuan, P. (2025). A Review of Environmental Control Strategies and Models for Modern Agricultural Greenhouses. Sensors, 25(5), 1388. https://doi. org/10.3390/s25051388 |
| 5 | Chimankare, R. V. (2023). A review study on the design and control of optimised greenhouse environments. Renewable Agriculture Reviews, 18(4), 221–235. |
| 6 | Despommier, D. D. (2011). The vertical farm: Feeding the world in the 21st century. First Picador ed., St. Martin’s Press. |
| 7 | Diaz, G. (2023). Design and evaluation of a greenhouse interface for user-friendly climate monitoring and control. International Journal of Smart Agriculture, 9(3), 102–115. |
| 8 | Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, E. (2017). Vertical farming: Creating an accessible and sustainable future. A review. Journal of Landscape Ecology, 10(1), 35–60. |
| 9 | Kittas, C., Katsoulas, N., Bartzanas, T., & Bakker, S. (2013). Greenhouse climate control and energy use. Food and Agriculture Organization of the United Nations. |
| 10 | Labidi, A., Chouchaine, A., & Marni, A. (2021). Intelligent climate control system inside a greenhouse. International Journal of Advanced Computer Science and Applications, 12(2). https://doi. org/10.14569/IJACSA.2021.0120229 |
| 11 | Linker, R., Kacira, M., & Arbel, A. (2011). Robust climate control of a greenhouse equipped with variable-pressure fogging system and variable-speed extracting fans. Control Engineering Practice, 19(6), 636–648. https://doi.org/10.1016/j.conengprac.2011.02.003 |
| 12 | López-Cruz, I.L., Ramírez-Arias, A., Rojano-Aguilar, A. and Ruiz-García, A. (2008). Modeling of greenhouse climate using evolutionary algorithms. Acta Hortic. 801, 401-408. https://doi. org/10.17660/ActaHortic.2008.801.42 |
| 13 | Mahmood, F., Govindan, R., Bermak, A., Yang, D., & Al-Ansari, T. (2023). Data-driven robust model predictive control for greenhouse temperature control and energy utilisation assessment. Applied Energy, 343, Article 121190. https://doi.org/10.1016/j.apenergy.2023.121190 |
| 14 | Mallick, S., Airaldi, F., Dabiri, A., Sun, C., & De Schutter, B. (2024). Reinforcement Learning- based Model Predictive Control for Greenhouse Climate Control. arXiv preprint. arXiv:2409.12789 arxiv.org |
| 15 | Matyakubova, P. M., Ismatullayev, P. R., & Sharipov, Sh. M. (2023). O‘lchash usullari va vositalari (fizik-kimyoviy o‘lchashlar bir qismi) [Methods and tools of measurement (part of physico-chemical measurements)]. Tаshkent. |
| 16 | Morales, M. (2018). Deep reinforcement learning. Manning Publ. |
| 17 | Morcego, B., López, G., & Colomer, M. (2023). Reinforcement learning versus model predictive control on greenhouse climate control. Control Engineering Practice, 138, 105536. https://doi. org/10.1016/j.conengprac.2023.105536 |
| 18 | Naagarajan, R. A., Sathyanarayanan, K. K., Bauer, N., & Streif, S. (2025). Automated analysis and textual summarization of time-varying references in advanced greenhouse climate control. Frontiers in Agronomy, 7. https://doi.org/10.3389/fagro.2025.1536998 |
| 19 | Platero-Horcajadas, M., Pardo-Pina, S., Cámara-Zapata, J.-M., Brenes-Carranza, J.-A., & Ferrández-Pastor, F.-J. (2024). Enhancing greenhouse ef�iciency: Integrating IoT and reinforcement learning for optimized climate control. Sensors, 24(24), 8109. https://doi.org/10.3390/s24248109 MDPI |
| 20 | Puglisi, G., Vox, G., Schettini, E., Morosinotto, G., & Campiotti, C. (2017). Climate control inside a greenhouse by means of a solar cooling system. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227. Beijing, China. |
| 21 | Sen, N. (2018). Automatic Climate Control of a Greenhouse: a Review. ADBU Journal of Electrical and Electronics Engineering (AJEEE). |
| 22 | Singh, N. (2024). IoT-based greenhouse technologies for enhanced crop monitoring and climate control. Journal of Agricultural IoT Studies, 5(2), 45–56. |
| 23 | Tuttelberg, K., Kilter, J., & Uhlen, K. (2017). Comparison of system identification methods applied to analysis of inter-area modes. In Proceedings of the International Conference on Power Systems Transients (IPST2017). Seoul, South Korea. |
| 24 | Urakov, E. E., Musayeva, Z. D., & Rashidov, T. E. (2023). The importance of metrology and standardization in greenhouse climate control. Science and Innovation, Series D, 2(1). https:// scientists.uz/view?id=3604 |
| 25 | Van Mourik, S., van ’t Ooster, B., & Vellekoop, M. (2023). Plant performance in precision horticulture: Optimal climate control under stochastic uncertainty. Biosystems Engineering, 232, 34– 48. https://doi.org/10.1016/j.biosystemseng.2023.05.010 |
| 26 | Yassin, I. M., Taib, M. N., & Adnan, R. (2013). Recent Advancements & Methodologies in System Identification: A Review. Scientific Research Journal (SCIRJ), 1(1), 14-33. https://www.scirj.org/ papers-0813/scirj-august-2013-edition-03.pdf |
| 27 | Yusuf, A. G. (2025). Optimizing greenhouse microclimate for plant pathology. Plant Pathology and Environment, 12(1), 77–89. |