21

As the demand for renewable energy sources grows, integrating solar-powered systems offers a promising solution. However, conventional photovoltaic (PV) panels typically convert only 15-20% of incident radiation into usable energy. Consequently, scientists worldwide are actively researching ways to improve panel performance and achieve higher energy efficiency by optimizing solar radiation flux density. This experimental study presents the design of a mobile photovoltaic-thermal device with an autonomous energy supply system. It details the results of experiments aimed at increasing electrical energy efficiency by testing a water-based cooling system for the module surface. The article also provides and analyzes time-dependent graphs of parameters such as short-circuit current, open-circuit voltage, solar radiation flux density, and ambient temperature, along with formulas for calculating the electrical and hot water energy obtained from the experiments. Additionally, this experimental research presents the results of trial tests conducted on a photovoltaic-thermal device with a power of 600 W and a useful surface area of 3.25 m2. This device is designed for small-scale electricity and hot water supply to both populations located far from centralized energy grids and social facilities engaged in mobile activities. The findings indicate that using additional reflectors to increase the incident 
solar radiation flux density on the experimental setup boosted the amount of solar radiation reaching the surface by 1.8-2.0 times. Additionally, by employing water as the working fluid in the mobile photovoltaic-thermal device’s collector, the panel surface temperature was reduced by 1.2-1.5 times. Based on experimental findings, a mobile photo-thermal device with an autonomous energy supply typically achieves an electrical energy output efficiency of 14.3% and a thermal energy efficiency of 73%.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 17-09-2025
  • O'qishlar soni 21
  • Nashr sanasi 07-08-2025
  • Asosiy tilIngliz
  • Sahifalar74-88
English

As the demand for renewable energy sources grows, integrating solar-powered systems offers a promising solution. However, conventional photovoltaic (PV) panels typically convert only 15-20% of incident radiation into usable energy. Consequently, scientists worldwide are actively researching ways to improve panel performance and achieve higher energy efficiency by optimizing solar radiation flux density. This experimental study presents the design of a mobile photovoltaic-thermal device with an autonomous energy supply system. It details the results of experiments aimed at increasing electrical energy efficiency by testing a water-based cooling system for the module surface. The article also provides and analyzes time-dependent graphs of parameters such as short-circuit current, open-circuit voltage, solar radiation flux density, and ambient temperature, along with formulas for calculating the electrical and hot water energy obtained from the experiments. Additionally, this experimental research presents the results of trial tests conducted on a photovoltaic-thermal device with a power of 600 W and a useful surface area of 3.25 m2. This device is designed for small-scale electricity and hot water supply to both populations located far from centralized energy grids and social facilities engaged in mobile activities. The findings indicate that using additional reflectors to increase the incident 
solar radiation flux density on the experimental setup boosted the amount of solar radiation reaching the surface by 1.8-2.0 times. Additionally, by employing water as the working fluid in the mobile photovoltaic-thermal device’s collector, the panel surface temperature was reduced by 1.2-1.5 times. Based on experimental findings, a mobile photo-thermal device with an autonomous energy supply typically achieves an electrical energy output efficiency of 14.3% and a thermal energy efficiency of 73%.

Ўзбек

Qayta tiklanuvchi energiya manbalariga bo‘lgan talab ortib borayotganligi sababli quyosh energiyasi asosida ishlovchi energetik qurilmalardan integratsiyalashgan holda foydalanish istiqbolli yechim hisoblanadi. Ammo bu odatiy fotoelektr batareyalar ularga tushayotgan nurlanishning atigi 15–20 % qismini foydali energiyaga aylantirib berganligi sababli hozirda dunyo olimlari tomonidan ushbu panellarning ish faoliyatini yaxshilash va quyosh nurlanish oqim zichligidan foydalanib, yuqori energiya 
samaradorlikka erishish bo‘yicha ilmiy-tadqiqot ishlari amalga oshirilmoqda. Ushbu tajribaviy tadqiqot ishida avtonom energiya ta’minot tizimiga ega mobil fotoissiqlik qurilmaning dizayni, suv asosida modul sirtining sovitish tizimini sinovdan o‘tkazish orqali elektr energiya samaradorligini oshirish bo‘yicha 
olib borilgan tajriba natijalari bayon qilingan. Shuningdek, maqolada tajriba natijasida olinadigan elektr va issiq suv energiyasini hisoblash formulalari, qisqa tutashuv toki va salt yurish kuchlanishi, quyosh nurlanish oqim zichligi va atrof-muhit harorati kabi parametrlarning vaqtga bog‘liq ravishda o‘zgarish 
grafiklari keltirilib, tahlil qilingan. Bundan tashqari, ushbu tajribaviy-tadqiqot ishida markazlashgan energiya ta’minotidan uzoqda joylashgan aholi va ko‘chma faoliyat olib boradigan ijtimoiy soha obyektlarini kichik quvvatli elektr energiya va issiq suv ta’minotiga mo‘ljallangan 600 W quvvatga ega hamda foydali yuzasi 3,25 m2 bo‘lgan fotoissiqlik qurilmasida o‘tkazilgan tajriba-sinov ishlarining natijalari keltirilgan. Unga ko‘ra, tajriba qurilmasida quyosh nurlanish oqim zichligi miqdorini oshirish uchun qo‘shimcha reflektorlardan foydalanish orqali sirtga tushayotgan quyosh nurlanish oqimi miqdori 1,8–2,0 barobarga oshgan hamda mobil fotoissiqlik qurilmasining kollektorida ishchi jism sifatida suvdan foydalanish orqali panel yuzasi harorati 1,2–1,5 marotabagacha pasaytirilgan. Tajriba natijalariga ko‘ra, avtonom energiya ta’minotiga ega mobil fotoissiqlik qurilmasining elektr energiyasi berish samaradorligi o‘rtacha 14,3 %, issiqlik energiyasi samaradorligi esa o‘rtacha 73 %ni tashkil etadi.

Русский

В условиях растущего спроса на возобновляемые источники энергии интеграция систем, работающих на солнечной энергии, представляет собой перспективное решение. Однако традиционные фотоэлектрические панели, как правило, преобразуют лишь 15–20 % падающего излучения в полезную энергию. В связи с этим во всём мире ведутся активные научные исследования, направленные на повышение эффективности панелей путём оптимизации плотности потока солнечного излучения. Настоящее экспериментальное исследование посвящено разработке мобильного фотовольтаическо-теплового устройства с автономной системой энергоснабжения. В работе представлены результаты экспериментов по повышению электрической эффективности за счёт применения системы водяного охлаждения 
поверхности модуля. Приведены и проанализированы графики изменения во времени параметров, таких как ток короткого замыкания, напряжение холостого хода, плотность потока солнечного излучения и температура окружающей среды. Также представлены формулы для расчёта произведённой электрической и тепловой энергии. Кроме того, в рамках исследования представлены результаты испытаний устройства мощностью 600 Вт с полезной поверхностью 3,25 м². Данное устройство предназначено для снабжения электроэнергией и горячей водой малых объектов, удалённых от централизованных электросетей, а также мобильных социальных объектов. Результаты показали, что применение дополнительных отражателей увеличивает 
поступающий на поверхность панели поток солнечного излучения в 1,8–2,0 раза. Применение воды в качестве теплоносителя в коллекторе устройства позволило снизить температуру поверхности панели в 1,2–1,5 раза. По результатам экспериментов установлено, что мобильное фотовольтаическо-тепловое устройство с автономным энергоснабжением обеспечиваетэлектрическую эффективность 14,3 % и тепловую эффективность 73 %.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Rakhmatov A.R. Doctoral Student at the Department of “Renewable Energy Sources” Tashkent State Technical University named after I. Karimov
2 Shoguchkarov S.Q. PhD in Technical Science, Associate Professor Tashkent State Technical University named after I. Karimov
3 Halimov A.S. PhD in Technical Science, Associate Professor, Senior Researcher at the Laboratory of Solar Thermal and Energetic Applications Institute of Physics and technology of the Academy of Sciences of the Republic of Uzbekistan
Havola nomi
1 Abd-Elhady, M. M., El-Sharkawy, I. I., Hamed, A.M., & Salem, M. S. (2024). Transient mass and heat transport modeling in a multi-tray packed bed solid desiccant dehumidi�ier: A parametric analysis. International Journal of Refrigeration, 157, 109–117. https://doi.org/10.1016/j. ijrefrig.2023.10.019/
2 Abdelrazik, A. S., Al-Sulaiman, F. A., Saidur, R., & Ben-Mansour, R. (2018). A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renewable and Sustainable Energy Reviews, 95, 110–129. https://doi.org/10.1016/j.rser.2018.07.013/
3 Abdul-Ganiyu, S., Quansah, D. A., Ramde, E. W., Seidu, R., & Adaramola, M. S. (2021). Study effect of flow rate on flat-plate water-based photovoltaic-thermal (PVT) system performance by analytical technique. Journal of Cleaner Production, 321, 128985. https://doi.org/10.1016/j. jclepro.2021.128985/
4 Ahmed, S., & Rahman, M. M. (2023). Hybrid solar systems: A sustainable energy solution for rural electrification. Renewable Energy Reviews, 157, 112498. https://doi.org/10.1016/j.rser.2021.112498/
5 Alqarni, M. M., Mahmoud, E.E., Algehyne, E. A., El-Refaey, A. M., El-Shorbagy, M. A., & Ibrahim, M. (2021). Improvement of the thermal and hydraulic performance of parabolic trough collectors using hybrid nano�luids and novel turbulators with holes and ribs. Sustainable Energy Technologies and Assessments, 47, 101480. https://doi.org/10.1016/j.seta.2021.101480
6 Al-Waeli, A. H. A., Sopian, K., Kazem, H. A., & Chaichan, M. T. (2023). Design configuration and operational parameters of bi-�luid PVT collectors: An updated review. Environmental Science and Pollution Research, 30, 81474–81492. https://doi.org/10.1007/s11356-023-25321-0
7 Bassam, A.M., Sopian, K., Ibrahim, A., Faizal, M., Al-aasam, A. B., & Yahay, G. (2023). Case studies in thermal engineering: Experimental analysis for the photovoltaic thermal collector (PVT) with nano PCM and micro-�ins tube nanofluid. Case Studies in Thermal Engineering, 41, 102579. https://doi. org/10.1016/j.csite.2022.102579
8 Daghigh, R., Ruslan, M. H., & Sopian, K. (2011). Advances in liquid based photovoltaic/ thermal (PV/T) collectors. Renewable and Sustainable Energy Reviews, 15, 4156–4170. https://doi. org/10.1016/j.rser.2011.07.028
9 De Rosa, M., Bianco, N., & Scarpa, F. (2022). Thermal regulation in PV modules using water- cooled back panels. Applied Thermal Engineering, 205, 117941. https://doi.org/10.1016/j. applthermaleng.2021.117941
10 Ewe, W. E., Fudholi, A., Mustapha, M., Solomin, E., Yazdi, M. H., Suyono, T., Asim, N., Nazri, N. S., Rajani, A., Darussalam, R., Susatyo, A., Sudibyo, Martoni, H., Sumarjo, J., Abimanyu, H., & Sopian, K. (2024). Energy-economic-environmental analysis of bifacial photovoltaic thermal (BPVT) solar air collector with jet impingement. Case Studies in Thermal Engineering, 63, 105257. https://doi. org/10.1016/j.csite.2022.102579
11 Hadorn, J., Lämmle, M., Kramer, K., Munz, G., Ryan, G., Herrando, M., et al. (2020). Design guidelines for PVT collectors. In International Energy Agency (IEA). Task 60 – Application of PVT Collectors in New Solutions for HVAC Systems, SHC Programme. https://doi.org/10.18777/ieashc-task60-2020-0003/
12 Hamada, A., Emam, M., Refaey, H.A., Moawed, M., & Abdelrahman, M. A. (2023). Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study. Energy, 284, 128574. https://doi.org/10.1016/j.energy.2023.128574/
13 Hariharan, S., & Rahul, A. (2022). Improving thermal-electric performance in PV/T air systems with advanced materials. Solar Energy Materials & Solar Cells, 240, 111675. https://doi.org/10.1016/j. solmat.2022.111675
14 Hooshmandzade, N., Motevali, A., Reza, S., Seyedi, M., & Biparva, P. (2021). Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system. Applied Energy, 304, 117769. https://doi.org/10.1016/j.apenergy.2021.117769
15 Hussien, A., Eltayesh, A., & El-batsh, H. M. (2023). Experimental and numerical investigation for PV cooling by forced convection. Alexandria Engineering Journal, 64, 427–440. https://doi. org/10.1016/j.aej.2022.09.006
16 Jiao, C., & Li, Z. (2023). An updated review of solar cooling systems driven by photovoltaic– thermal collectors. Energies, 16(14), 5331.
17 Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells, 82, 131–137. https://doi.org/10.1016/j. solmat.2004.01.011/
18 Lämmle, M., Hermann, M., Kramer, K., Panzer, C., Piekarczyk, A., Thoma, C., et al. (2018). Development of highly efficient, glazed PVT collectors with overheating protection to increase reliability and enhance energy yields. Solar Energy, 176, 87–97. https://doi.org/10.1016/j. solener.2018.09.082
19 Lazzarin, R. M., & Noro, M. (2018). Past, present, future of solar cooling: Technical and economical considerations. Solar Energy, 172, 2–13. https://doi.org/10.1016/j.solener.2017.12.055
20 Li, D., King, M., Dooner, M., Guo, S., & Wang, J. (2021). Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow. Solar Energy, 221, 433–444. https://doi.org/10.1016/j. solener.2021.04.050
21 Mellor, A., Alonso Alvarez, D., Guarracino, I., Ramos, A., Riverola Lacasta, A., Ferre Llin, L., et al. (2018). Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors. Solar Energy, 174, 386–398. https://doi.org/10.1016/j.solener.2018.09.004
22 Mittag, M. (2017). Reliability of TPedge PV modules successfully tested. Fraunhofer Institute for Solar Energy Systems ISE. https://www.ise.fraunhofer.de/en/press-media/press-releases/2017/ reliability-of-tpedge-pv-modules-successfully-tested.html
23 Montagnino, F. M. (2017). Solar cooling technologies: Design, application and performance of existing projects. Solar Energy, 154, 144–157. https://doi.org/10.1016/j.solener.2017.01.033
24 Pratish, K., & Ahmed, F. (2023). Water-based PV/T systems for thermal management: A case study. Energy Reports, 9, 202–213. https://doi.org/10.1016/j.egyr.2022.10.034
25 Rakhmatov, A. R. (2025). Wind flow and its influence on a mobile solar PV system mounted on trailer in Uzbekistan. In Energy innovations: fundamentals and innovative engineering solutions, International Scientific-Technical Conference, Urganch, 1257–1260.
26 Rakhmatov, A. R., & Halimov, A. S. (2025). The significance of alternative energy in addressing ecological challenges. In Energy innovations: fundamentals and innovative engineering solutions, International Scientific Conference, Urganch, 1562–1565.
27 Saavedra, A., Galvis, N.A., Mesa, F., Banguero, E., Castaneda, M., Zapata, S., & Aristizábal, A. J. (2021). Current state of the worldwide renewable energy generation: A review. International Journal of Engineering Applications, 9, 115–127. https://doi.org/10.15866/irea.v9i3.19987
28 Sadeghi, G., Safarzadeh, H., Bahiraei, M., Ameri, M., & Raziani, M. (2019). Comparative study of air and argon gases between cover and absorber coil in a cylindrical solar water heater: An experimental study. Renewable Energy, 135, 426–436. https://doi.org/10.1016/j.renene.2018.12.030
29 Sahota, L., & Tiwari, G. N. (2017). Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies. Solar Energy, 150, 96–127. https://doi.org/10.1016/j. solener.2017.04.023
30 Senthilraja, S., Gangadevi, R., Marimuthu, R., & Baskaran, M. (2020). Performance evaluation of water and air based PVT solar collector for hydrogen production application. International Journal of Hydrogen Energy, 45, 7498–7507. https://doi.org/10.1016/j.ijhydene.2019.02.223
31 Settino, J., Sant, T., Micallef, C., Farrugia, M., Spiteri Staines, C., Licari, J., et al. (2018). Overview of solar technologies for electricity, heating and cooling production. Renewable and Sustainable Energy Reviews, 90, 892–909. https://doi.org/10.1016/j.rser.2018.03.112/
32 Sheik, M. S., Kakati, P., Dandotiya, D., U. R. M., & R. C. S. (2022). A comprehensive review on various cooling techniques to decrease an operating temperature of solar photovoltaic panels. Energy Nexus, 8, 100161. https://doi.org/10.1016/j.nexus.2022.100161/
33 Shoguchkarov, S. Q., & Rakhmatov, A. R. (2025). Energy-efficient integration of hybrid photovoltaic-thermal solar systems into distributed electricity networks. Problems of Energy and Resource Saving, 88, ISSN (print): 2091-5985, ISSN (online): 2181-1946.
34 Sultan, S. M., & Ervina Efzan, M. N. (2018). Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 173, 939–954. https://doi.org/10.1016/j. solener.2018.08.032
35 Syakirah, N., Fudholi, A., Solomin, E., Arifin, M., Fadhli, M., Khaidzir, S., Ibrahim, M., Zaini, A., & Nazli, N. (2023). Analytical and experimental study of hybrid photovoltaic–thermal–thermoelectric systems in sustainable energy generation. Case Studies in Thermal Engineering, 51, 103522.
36 Taner, T. (2018). Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy, 143, 284–294. https://doi.org/10.1016/j.energy.2017.10.102
37 Tyagi, P. K., & Kumar, R. (2024a). Performance enhancement of nanofluid-based photovoltaic/ thermal system with a novel finned multi-block container of phase change material in the summer season of northern India. Journal of Energy Storage, 90, 111733. https://doi.org/10.1016/j. est.2024.111733
38 Tyagi, P. K., & Kumar, R. (2024b). Thermodynamic modeling and performance optimization of nanofluid-based photovoltaic/thermal system using central composite design scheme of response surface methodology. Renewable Energy, 225, 120341. https://doi.org/10.1016/j.renene.2024.120341
39 Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., & Shuvo, N. (2013). A review of solar thermal refrigeration and cooling methods. Renewable and Sustainable Energy Reviews, 51, 1428–1445. https://doi.org/10.1016/j.rser.2015.07.011
40 Upadhyay, B. H., Patel, A. J., Sadasivuni, K. K., Mistry, J. M., Ramana, P. V., Panchal, H., Ponnamma, D., & Essa, F. A. (2021). Design, development and techno economic analysis of novel parabolic trough collector for low-temperature water heating applications. Case Studies in Thermal Engineering, 26, 100978. https://doi.org/10.1016/j.csite.2021.10097
41 Wajidh, M. N., Yap, C. C., Issa, N. A., Lau, K. S., Tan, S. T., Jumali, M. H. H., Mustapha, M., & Chia, C. H. (2023). Photovoltaic performance improvement of inverted type organic solar cell by co- introducing isopropanol and carbon quantum dots in photoactive layer. Journal of Materials Science: Materials in Electronics, 34(13), 1075.
42 Wajidh, M. N., Issa, N.A., Lau, K. S., Tan, S. T., Chia, C. H., Mustapha, M., Jumali, M. H. H., & Yap, C. C. (2024). Enhancing indoor photovoltaic performance of inverted type organic solar cell by controlling photoactive layer solution concentration. Sains Malaysiana, 53(10), 3511–3520.
43 Wang, N., Ni, L. L., Wang, A., Shan, H. S., Jia, H. Z., & Zuo, L. (2022). High-efficiency photovoltaic- thermoelectric hybrid energy harvesting system based on functionally multiplexed intelligent thermal management. Energy Conversion and Management, 272.
44 Zaini, M. I. A., Mustapha, M., Rosli, N. N., Mutalib, M. A., Nazri, N. S., Sulong, W. M. W., & Fudholi, A. (2024). Effect of thermoelectric cooling system on the performance of photovoltaic-thermal collector: A review. International Journal of Renewable Energy Research, 14(3), 674–684.
45 Zhou, J., Zhao, X., Ma, X., Du, Z., Fan, Y., Cheng, Y., et al. (2017). Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump. Solar Energy, 155, 464–477. https://doi.org/10.1016/j. solener.2017.06.056
Kutilmoqda