So‘nggi yillarda global energetika sektori energiya ishonchliligi, ekologik barqarorlik va qayta tiklanadigan energiya manbalaridan samarali foydalanish bilan bog‘liq tobora ortib borayotgan muammolarga duch keldi.
Ayniqsa, chekka va tog‘li hududlarda beqaror elektr ta’minoti dolzarb muammo bo‘lib qolmoqda. Gibrid tizimlarda shamol va gidroenergetikani birlashtirish innovatsion hamda mintaqaviy moslashuvchan yechim beradi. Shamol
potensiali va oqar suv resurslariga mos relyefda joylashgan Chortoq mikro GESi ushbu integratsiyani o‘rganish uchun tegishli misollar taqdim etadi. Ushbu tadqiqotning asosiy maqsadi barqaror va uzluksiz elektr ta’minoti yaratishda shamol va gidroenergetika manbalarini birlashtirgan gibrid energiya tizimlari samaradorligini baholashdan iborat. Tadqiqot Chortoq mikro GESi misolida energiya samaradorligi, tizim ishonchliligi va optimallashtirish strategiyalarini
tahlil qilishga qaratilgan. Bu ish turli atrof-muhit sharoitlarida gibrid tizimlar ishlashini baholash uchun modellashtirish va simulyatsiya usullaridan foydalanadi. Shamol turbinalari va mikro-gidroelektrostansiyalarning texnik
parametrlari gibrid konfiguratsiyaga birlashtirilgan. Energiya ishlab chiqarish hisob-kitoblari, ishonchlilik ko‘rsatkichlari (LOLP va LPSP kabi) va iqtisodiy samaradorlik tahlillari MATLAB/Simulink va HOMER Pro vositalari yordamida
amalga oshiriladi. Tahlillar shuni ko‘rsatadiki, gibrid shamol-gidrotizim individual manba uzilishlarini qoplash orqali energiya ta’minoti barqarorligini sezilarli darajada yaxshilaydi. Simulyatsiya natijalari elektr ta’minotidagi uzilishlarning
75 %ga qisqargani, yukni qoplash yaxshilangani va zaxira dizel generatorlariga bo‘lgan ishonchning 30 %ga kamayganini ko‘rsatadi. Natijalar Chortoq va shunga o‘xshash hududlar sharoitida kichik hajmdagi gibrid tizimlar ham texnik jihatdan foydali, ham iqtisodiy jihatdan samarali ekanligini tasdiqlaydi.
In recent years, the global energy sector has faced growing challenges related to power supply reliability, environmental sustainability, and efficient utilization of renewable energy sources.Unstable electricity supply remains a critical issue, particularly in remote and mountainous regions. Combining wind and hydropower in hybrid systems presents an innovative and regionally adaptable solution. The Chortoq micro hydropower plant, located in a terrain with suitable wind potential and flowing water resources, serves as a relevant case study for investigating this integration. The main objective of this research is to evaluate the effectiveness of hybrid energy systems that combine wind and hydropower sources in ensuring a stable and continuous electricity supply. The study focuses on analyzing energy efficiency, system reliability, and optimization strategies using the Chortoq micro hydropower plant as an example. This work
utilizes modeling and simulation methods to assess the performance of hybrid systems under varying environmental conditions. Technical parameters of wind turbines and micro-hydropower installations are integrated into a hybrid configuration. Energy output calculations, reliability metrics (such as LOLP and LPSP), and cost-effectiveness analyses were conducted using MATLAB/Simulink and HOMER Pro tools. The analysis indicates that the hybrid wind-hydro system significantly improves energy supply stability by compensating for the intermittency of individual sources. Simulation results show a reduction in power outages by more than 75%, improved load coverage, and a 30% decrease in reliance on backup diesel generators. The results confirm that small-scale hybrid systems are both technically viable and economically efficient in the context of Chortoq and similar regions.
So‘nggi yillarda global energetika sektori energiya ishonchliligi, ekologik barqarorlik va qayta tiklanadigan energiya manbalaridan samarali foydalanish bilan bog‘liq tobora ortib borayotgan muammolarga duch keldi.
Ayniqsa, chekka va tog‘li hududlarda beqaror elektr ta’minoti dolzarb muammo bo‘lib qolmoqda. Gibrid tizimlarda shamol va gidroenergetikani birlashtirish innovatsion hamda mintaqaviy moslashuvchan yechim beradi. Shamol
potensiali va oqar suv resurslariga mos relyefda joylashgan Chortoq mikro GESi ushbu integratsiyani o‘rganish uchun tegishli misollar taqdim etadi. Ushbu tadqiqotning asosiy maqsadi barqaror va uzluksiz elektr ta’minoti yaratishda shamol va gidroenergetika manbalarini birlashtirgan gibrid energiya tizimlari samaradorligini baholashdan iborat. Tadqiqot Chortoq mikro GESi misolida energiya samaradorligi, tizim ishonchliligi va optimallashtirish strategiyalarini
tahlil qilishga qaratilgan. Bu ish turli atrof-muhit sharoitlarida gibrid tizimlar ishlashini baholash uchun modellashtirish va simulyatsiya usullaridan foydalanadi. Shamol turbinalari va mikro-gidroelektrostansiyalarning texnik
parametrlari gibrid konfiguratsiyaga birlashtirilgan. Energiya ishlab chiqarish hisob-kitoblari, ishonchlilik ko‘rsatkichlari (LOLP va LPSP kabi) va iqtisodiy samaradorlik tahlillari MATLAB/Simulink va HOMER Pro vositalari yordamida
amalga oshiriladi. Tahlillar shuni ko‘rsatadiki, gibrid shamol-gidrotizim individual manba uzilishlarini qoplash orqali energiya ta’minoti barqarorligini sezilarli darajada yaxshilaydi. Simulyatsiya natijalari elektr ta’minotidagi uzilishlarning
75 %ga qisqargani, yukni qoplash yaxshilangani va zaxira dizel generatorlariga bo‘lgan ishonchning 30 %ga kamayganini ko‘rsatadi. Natijalar Chortoq va shunga o‘xshash hududlar sharoitida kichik hajmdagi gibrid tizimlar ham texnik jihatdan foydali, ham iqtisodiy jihatdan samarali ekanligini tasdiqlaydi.
В последние годы мировой энергетический сектор сталкивается с растущими вызовами, связанными с надёжностью энергоснабжения, экологической устойчивостью и эффективным использованием возобновляемых источников энергии. Нестабильное электроснабжение остаётся серьёзной проблемой, особенно в удалённых
и горных районах. Комбинирование ветровой и гидроэнергии в гибридных системах представляет собой инновационное и регионально адаптируемое решение. Чортокская микроГЭС, расположенная на территории с
подходящим ветровым потенциалом и водными ресурсами, служит актуальным примером для исследования такой интеграции. Основная цель данного исследования заключается в оценке эффективности
гибридных энергосистем, объединяющих ветровые и гидроисточники, для обеспечения стабильного и непрерывного электроснабжения. В работе проанализированы энергетическая эффективность, надёжность системы и стратегии оптимизации на примере Чортокской микроГЭС. Для оценки работы гибридных систем в различных природных условиях применялись методы моделирования и имитационного анализа. Технические параметры ветротурбин и микроГЭС были интегрированы в единую гибридную конфигурацию. Расчёты энергетической выработки, показатели надёжности (такие как LOLP и LPSP), а также анализ экономической эффективности проводились с использованием инструментов MATLAB/Simulink и HOMER Pro. Анализ показал, что гибридная ветро-гидросистема значительно повышает стабильность энергоснабжения, компенсируя прерывистость отдельных источников. Результаты моделирования демонстрируют сокращение перебоев в подаче электроэнергии более чем на 75 %, улучшение покрытия нагрузки и снижение зависимости от резервных дизельных генераторов на 30 %. Полученные данные подтверждают, что маломасштабные гибридные системы являются как технически осуществимыми, так и экономически эффективными в условиях Чортока и аналогичных регионов.
| № | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
|---|---|---|---|
| 1 | Saloydinov S.Q. | Basic Doctoral Student (PhD) | Tashkent State Technical University |
| 2 | Zakhidov R.A. | Doctor of Technical Sciences, Professor, Academician | Institute of Energy Problems of the Academy of Sciences of the Republic of Uzbekistan |
| № | Havola nomi |
|---|---|
| 1 | Ali, K., Rana, Z., Niaz, A., & Liang, C. (2023). Fault tree analysis for reliability analysis of wind turbines considering the imperfect repair effect. European Journal of Theoretical and Applied Sciences. |
| 2 | Allaev, K. R. (2020). Energy of Uzbekistan and the world. Tashkent. |
| 3 | Allaev, K. R. (2021). Sovremennaya energetika i perspektivy ee razvitiya [Modern energy and prospects for its development]. Tashkent: Fan va texnologiyalar. |
| 4 | Bobojanov, M. K., & Mustaev, R. A. (2024, April 25–26). Kombinatsiyalashgan elektr ta’minot tizimlari uchun kontaktsiz qurilmalarni yaratish va tadqiq qilish [Development and research of contactless devices for combined power supply systems]. In Proceedings of the International Conference “Energetika kompleksining dolzarb muammolari: ishlab chiqarish, uzatish va ekologiya” [Actual Problems of the Energy Complex: Production, Transmission, and Ecology] (pp. 197–204). Karshi. |
| 5 | Bobojanov, M. K., & Mustaev, R. A. (2024, May 21–22). Qayta tiklanuvchi energiya manbalari integratsiyalangan tarmoqlarda reaktiv quvvatni kompensatsiyalash [Reactive power compensation in renewable energy integrated networks]. In Proceedings of the International Conference “Elektromexanik va elektrotekhnologik tizimlarni raqamlashtirishning dolzarb muammolari” [Actual Problems of Digitalization of Electromechanical and Electrotechnological Systems] (pp. 19–24). Tashkent. |
| 6 | Hutomo, G. P. D., Prasetya, H. E. G., & Arini, N. (2023). Reliability analysis of horizontal axis wind turbine using qualitative and quantitative methods. In 2023 International Electronics Symposium (IES) (pp. 144–149). IEEE. https://doi.org/10.1109/IES59143.2023.10242424 |
| 7 | International Electrotechnical Commission (IEC). (2006). IEC 61025: Fault tree analysis (FTA). https://webstore.iec.ch/publication/61025 |
| 8 | International Electrotechnical Commission (IEC). (2013). IEC 62264-1: Enterprise-control system integration – Part 1: Models and terminology. https://webstore.iec.ch/publication/62264-1 |
| 9 | International Organization for Standardization (ISO). (2021a). ISO/IEC 22989: Information technology – Artificial intelligence – Artificial intelligence concepts and terminology. https://www.iso. org/standard/81118.html |
| 10 | International Organization for Standardization (ISO). (2021b). ISO 23247-1: Automation systems and integration – Digital twin framework for manufacturing – Part 1: Overview and general principles. https://www.iso.org/standard/75066.html |
| 11 | Layate, Z., Bahi, T., Abadlia, I., Bouzeria, H., & Lekhchine, S. (2015). Reactive power compensation control for three-phase grid-connected photovoltaic generator. International Journal of Hydrogen Energy, 40(37), 12619–12626. |
| 12 | Mammadov, E., Farrokhabadi, M., & Cañizares, C. (2021). AI-enabled predictive maintenance of wind generators. In 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) (pp. 1–5). IEEE. |
| 13 | Nasyrov, T. Kh., Nepomnyashchiy, V. A., & Shamsiev, Kh. A. (2020). Vliyanie vetrovykh i solnechnykh elektrostantsiy na upravlyaemost i nadezhnost funktsionirovaniya energosistem [In�luence of wind and solar power plants on controllability and reliability of power systems]. Problemy energo- i resursosberezheniya [Problems of Energy and Resource Saving], (3–4), 25–37 |
| 14 | Oprea, S., Bâra, A., Preotescu, D., & Elefterescu, L. (2019). Photovoltaic power plants (PV-PP) reliability indicators for improving operation and maintenance activities: A case study of PV-PP Agigea located in Romania. IEEE Access, 7, 39142–39157. https://doi.org/10.1109/ACCESS.2019.2907098 |
| 15 | Sadnan, R., & Khan, M. Z. R. (2016). Fast real and reactive power flow control of grid-tie photovoltaic inverter. In 9th IEEE International Conference on Electrical and Computer Engineering (ICECE) (pp. 570–573). Dhaka, Bangladesh. |
| 16 | Saloydinov, S. (2024). Improvement and management of hybrid power plants with wind energy. Research Focus, 3(5), 38–45. |
| 17 | Saloydinov, S., Zakhidov, R., Umarov, S., & Joshi, L. (2024). Opportunities to increase the energy efficiency of reservoirs and hydroelectric power plants using wind energy technologies. In E3S Web of Conferences (Vol. 574, p. 01003). EDP Sciences. |
| 18 | Yang, W., Bao, X., & Zheng, Y. (2022). Digital twin approach to build predictive maintenance model and its case study. In 42nd Computers and Information in Engineering Conference (CIE), Vol. 2. ASME. |
| 19 | Zakhidov, R., & Saloydinov, S. (2024). Development of opportunities to improve the energy efficiency of hydropower plants using wind energy technologies. Uzbekhydroenergetics: Scientific and Technical Journal, 6(2), 79–84. |