22

This study shows how to “hit two targets with one math arrow”, trimming pressure drop (ΔP) down while cranking collection efficiency (η) up in industrial multi cyclone (MSC) dust collectors. A CFD based response surface “crystal ball” is hitched to a tag team optimizer-Genetic Algorithm leads, Differential Evolution finishes-then polished by an NSGA II Pareto “red carpet” filter. The quartet of tweakable dimensions (barrel diameter D, inlet width B, cone length Lc, vortex finder diameter Dv) forms the playground. The GA→DE relay squeezes the composite score from J=1.00 to J=0.17, slicing ΔP by 32% and boosting η by 9%. For a medium sized plant the makeover shaves roughly 14 MWh year⁻¹ of fan energy-about 11  t  CO₂ that never see daylight-proving that a little mathematical wizardry can make cyclones spin greener and leaner.

  • O'qishlar soni 22
  • Nashr sanasi 28-09-2025
  • Asosiy tilIngliz
  • Sahifalar222-225
English

This study shows how to “hit two targets with one math arrow”, trimming pressure drop (ΔP) down while cranking collection efficiency (η) up in industrial multi cyclone (MSC) dust collectors. A CFD based response surface “crystal ball” is hitched to a tag team optimizer-Genetic Algorithm leads, Differential Evolution finishes-then polished by an NSGA II Pareto “red carpet” filter. The quartet of tweakable dimensions (barrel diameter D, inlet width B, cone length Lc, vortex finder diameter Dv) forms the playground. The GA→DE relay squeezes the composite score from J=1.00 to J=0.17, slicing ΔP by 32% and boosting η by 9%. For a medium sized plant the makeover shaves roughly 14 MWh year⁻¹ of fan energy-about 11  t  CO₂ that never see daylight-proving that a little mathematical wizardry can make cyclones spin greener and leaner.

Русский

Это исследование показывает, как «ударять по двум целям одной математической стрелой», снижая падение давления (ΔP) при одновременном повышении эффективности сбора (η) в промышленных мультициклонных (MSC) пылеуловителях. Поверхность ответа на основе CFD «кристаллический шар» прикреплена к теговому оптимизатору - генетический алгоритм ведет, дифференциальная эволюция завершается - затем отполирована фильтром NSGA II Pareto «красный ковер». Четверть изменяемых размеров (диаметр ствола D, ширина входа B, длина конуса Lc, диаметр вихреловителя Dv) образует детскую площадку. Реле GA→DE сжимает составную оценку от J=1,00 до J=0,17, разрезает ΔP на 32% и повышает η на 9%. Для среднеразмерного завода перекладка потребляет около 14 МВт·ч энергии вентилятора в год−1 - примерно 11 тонн CO2, который никогда не видит дневного света - что доказывает, что небольшое математическое волшебство может сделать циклоны зеленее и тоньше вращающимися.

Ўзбек

Ushbu tadqiqot sanoat multitsiklon chang tutgichlarida (MSC) yig‘ish samaradorligini (η) oshirish bilan bir vaqtda bosim pasayishini (ΔP) kamaytirish orqali “ikkita nishonga bitta matematik o‘q bilan zarba berish”ni ko‘rsatadi. CFD asosidagi “kristall shar” javob yuzasi teg optimizatoriga biriktirilgan - genetik algoritm boshqaradi, differensial evolyutsiya yakunlanadi - so‘ngra NSGA II Pareto “qizil gilam” filtri bilan sayqallanadi. O‘zgaruvchan o‘lchamlarning chorak qismi (stvol diametri D, kirish kengligi B, konus uzunligi Lc, uyurma tutgich diametri Dv) bolalar maydonchasini tashkil etadi. GA→DE relesi tarkibiy bahoni J=1,00 dan J=0,17 gacha siqadi, ΔP ni 32% ga kesadi va η ni 9% ga oshiradi. O‘rtacha o‘lchamdagi zavod uchun qayta yotqizish yiliga taxminan 14 MVt/soat ventilyator energiyasini iste’mol qiladi−1 - taxminan 11 tonna CO2, u hech qachon kunduzgi yorug‘likni ko‘rmaydi - bu kichik matematik sehr-jodu siklonlarni yashilroq va ingichkaroq aylantirishi mumkinligini isbotlaydi.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Jurayev S.S. dotsenti Namangan Davlat Texnika universiteti
Havola nomi
1 Djurayev, S. S. (2024). Multisiklon qurilmasi samaradorligiga zarralar o‘lchami va kontsentratsiyasining ta’siri. Al-Farg‘oniy avlodlari, 1(3), 153–158. https://doi.org/10.5281/zenodo.13954937
2 Djurayev, S. S.,& Sharibayev, N. Y. (2025). Yangi avlod multisiklonlarning soddalashtirilgan konstruksiyalari va ularning ekologik ta’sirini kamaytirishdagi o‘rni. Science and Innovation in the Education System, 4(3), 27–29. https://doi.org/10.5281/zenodo.15039739
3 Djurayev, S. S., & Sharibayev, N. Y. (d2025). Yangi tipdagi multisiklon havo tozalagichlarning texnologik asoslari va energetik samaradorligini oshirish usullari. Academic Research in Modern Science, 4(12), 96–100. https://doi.org/10.5281/zenodo.15039677
4 Sharibaev, N. Y., Tursunov, A. A., & Djuraev, S. S. (2022). Mathematical modeling of the laws of airborne distribution of dust particles generated in manufacturing plants. Journal of Physics: Conference Series, 2373(7), 072043. https://doi.org/10.1088/1742-6596/2373/7/072043
5 Sharibayev, N. Y., Tursunov, A. A. O., & Djurayev, S. S. (2021). Intellectual devices for determination of dust particle concentration. Current Research Journal of Pedagogics, 2(12), 166 170. https://doi.org/10.37547/pedagogics-crjp-02-12-33
6 Djurayev, S. S., & Ermatova, Z. Q. (2024). Yangi konstruktsiyadagi multisiklon qurilmasining energiya samaradorligini tahlil qilish. Al-Farg‘oniy avlodlari, 1(4), 327 – 331.
Kutilmoqda