Дала назорати” avtomatlashtirilgan axborot tizimi asosida innovatsion prognoz va monitoring tizimi
ishlab chiqilib, amaliyotga tatbiq etildi. Ushbu tizim orqali dala kuzatuvlari natijalari real vaqt rejimida yangilanib boriladi
va meteorologik ma’lumotlar orqali olinadigan ob-havo ma’lumotlari asosida zararkunandalar va o‘simlik kasalliklarining
fenologik kalendar avtomatik tarzda hisoblanadi. Fenologik kalendarga 47 turdagi zararkunanda hasharotlar va 8 turdagi
o‘simlik kasalliklari kiritilgan bo‘lib, ularning rivojlanish davri 10 kun oldindan prognoz qilinadi. Mazkur maqolada tizimning
tuzilishi, hisoblash tizimi va hududlarda qo‘llanilish samaradorligi yoritib berilgan.
Дала назорати” avtomatlashtirilgan axborot tizimi asosida innovatsion prognoz va monitoring tizimi
ishlab chiqilib, amaliyotga tatbiq etildi. Ushbu tizim orqali dala kuzatuvlari natijalari real vaqt rejimida yangilanib boriladi
va meteorologik ma’lumotlar orqali olinadigan ob-havo ma’lumotlari asosida zararkunandalar va o‘simlik kasalliklarining
fenologik kalendar avtomatik tarzda hisoblanadi. Fenologik kalendarga 47 turdagi zararkunanda hasharotlar va 8 turdagi
o‘simlik kasalliklari kiritilgan bo‘lib, ularning rivojlanish davri 10 kun oldindan prognoz qilinadi. Mazkur maqolada tizimning
tuzilishi, hisoblash tizimi va hududlarda qo‘llanilish samaradorligi yoritib berilgan.
На основе автоматизированной информaцонной системы “Дала назорати” разработана и внедрена
в практику инновaционная система прогноза и мониторинга. С помощью данной системы результаты полевых
наблюдений обновляются в режиме реального времени, а фенологический календарь вредителей и болезней растений
автоматически рассчитывается на основе метеорологических данных, полученных с использованием погодной
информaции. В фенологический календарь включены 47 видов вредных насекомых и 8 видов болезней растений, причём их
фазы развития прогнозируются за 10 дней вперёд. В данной статье освещены структура системы, методы расчётов
и эффективность её применения в различных регионах.
An innovative forecasting and monitoring system has been developed and implemented based on the automated
information system “Dala nazorati.” Through this system, field observation results are updated in real-time, and a phenological
calendar of pests and plant diseases is automatically calculated using meteorological data obtained from weather information.
The phenological calendar includes 47 types of harmful insects and 8 types of plant diseases, with their development stages
forecasted 10 days in advance. This article describes the structure of the system, the calculation methods, and the effectiveness
of its application in various regions.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Rasulova M.S. | kichik ilmiy xodim | O‘simliklar karantini va himoyasi ilmiy-tadqiqot instituti |
2 | Mambetnazarov A.B. | laboratoriya mudiri, qishloq xo‘jaligi falsafa fanlari doktori, katta ilmiy xodim | O‘simliklar karantini va himoyasi ilmiy-tadqiqot instituti |
№ | Name of reference |
---|---|
1 | 1. Bakthavatsalam N., Vinutha J., Ramakrishna P., Raghavendra A., Ravindra K. V., Verghese A. Autodetection in Helicoverpa armigera (Hubner) // Current Science. – 2016. – Vol. 110, № 12. – P. 2261–2267 |
2 | 2. Čirjak D., Miklečić I., Pajač Živković I., Jemrić T. Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions // Horticulturae. – 2020. – Vol. 6, № 4. – Art. № 520. – DOI: https://doi.org/10.3390/horticulturae8060520. |
3 | 3. Drake V.A., Wang H.K., Harman I.T. Insect monitoring radar: remote and network operation // Computers and Electronics in Agriculture. – 2002. – Vol. 35, № 2–3. – P. 77–94. |
4 | 4. Magarey R.D., Borchert D.M., Fowler G.A. The NCSU/APHIS Plant Pest Forecasting System (NAPPFAST) // Pest Risk Modelling and Mapping for Invasive Alien Species / Ed. R.C. Venette. – Wallingford: CABI, 2015. – P. 82–92 |
5 | 5. Rydhmer K., Bick E., Still L., Strand A., Luciano R., Helmreich S., Brittany D. Automating insect monitoring using unsupervised near-infrared sensors // Scientific Reports. – 2022. – Vol. 12. – 3 p |
6 | 6. Topu S., Adrien P., Gregory M., Thomas P. Monitoring the abundance of flying insects and atmospheric conditions during a 9-month campaign using an entomological optical sensor // Scientific Reports. – 2023. – Vol. 13. – P. 1–9. |