Sideroforlar ko’plab bakteriyalar, zamburug’lar va o’simliklar tomonidan Fe (III) xelyatsiyasi uchun sintezlanadi
va ajralib chiqadi. Turli xil o’simliklarning o’sishini rag’batlantiruvchi bakteriyalar (PGPB) rizosferani kolonizatsiya qiladi
va o’simliklar tomonidan temirning assimilyatsiyasiga hissa qo’shadi. Ushbu mikroorganizmlar temir tanqisligi sharoitida Fe
ionlarini ishlab chiqarish mexanizmlariga ega. Tegishli sharoitlarda ular sideroforlarni sintez qiladi va chiqaradi, shu bilan
temirning biologik mavjudligini oshiradi va tartibga soladi. hayot aylanishi, ularning biosintezidan Fe-siderofor kompleksining
parchalanishigacha; bakteriyalarda siderofor biosintezining uchta mexanizmi; bakteriyalarning sideroforlar va siderofor hosil
qiluvchi faolligini tahlil qilish usullari va bakteriya koloniyalarining siderofor hosil qiluvchi faolligini tekshirish usullari. Bakteriyalar
tomonidan siderofor sintezining biokimyoviy, molekulyar-biologik va fiziologik xususiyatlarini yanada tahlil qilish va
ulardan o’simliklar tomonidan foydalanish barqaror qishloq xo’jaligi uchun juda muhim bo’lgan tuproq unumdorligini oshirish
va o’simlik biomassasini oshirish uchun samarali mikrobiologik preparatlarni yaratishga imkon beradi.
Sideroforlar ko’plab bakteriyalar, zamburug’lar va o’simliklar tomonidan Fe (III) xelyatsiyasi uchun sintezlanadi
va ajralib chiqadi. Turli xil o’simliklarning o’sishini rag’batlantiruvchi bakteriyalar (PGPB) rizosferani kolonizatsiya qiladi
va o’simliklar tomonidan temirning assimilyatsiyasiga hissa qo’shadi. Ushbu mikroorganizmlar temir tanqisligi sharoitida Fe
ionlarini ishlab chiqarish mexanizmlariga ega. Tegishli sharoitlarda ular sideroforlarni sintez qiladi va chiqaradi, shu bilan
temirning biologik mavjudligini oshiradi va tartibga soladi. hayot aylanishi, ularning biosintezidan Fe-siderofor kompleksining
parchalanishigacha; bakteriyalarda siderofor biosintezining uchta mexanizmi; bakteriyalarning sideroforlar va siderofor hosil
qiluvchi faolligini tahlil qilish usullari va bakteriya koloniyalarining siderofor hosil qiluvchi faolligini tekshirish usullari. Bakteriyalar
tomonidan siderofor sintezining biokimyoviy, molekulyar-biologik va fiziologik xususiyatlarini yanada tahlil qilish va
ulardan o’simliklar tomonidan foydalanish barqaror qishloq xo’jaligi uchun juda muhim bo’lgan tuproq unumdorligini oshirish
va o’simlik biomassasini oshirish uchun samarali mikrobiologik preparatlarni yaratishga imkon beradi.
Сидерофоры синтезируются и секретируются многими бактериями, дрожжами, грибами и растениями
для хелатирования Fe (III). Различные бактерии, способствующие росту растений (PGPB), колонизируют ризосферу
и способствуют усвоению железа растениями. Эти микроорганизмы обладают механизмами для производства ионов
Fe в условиях дефицита железа. При соответствующих условиях они синтезируют и выделяют сидерофоры, тем
самым увеличивая и регулируя биодоступность железа. Здесь мы обсуждаем разнообразную химическую природу
сидерофоров, продуцируемых бактериями корней растений; жизненный цикл сидерофоров от их биосинтеза до
деградации комплекса Fe–сидерофор; три механизма биосинтеза сидерофоров в бактериях; методы анализа
сидерофоров и сидерофорпродуцирующей активности бактерий и методы скрининга сидерофорпродуцирующей
активности бактериальных колоний. Дальнейший анализ биохимических, молекулярно-биологических и физиологических
особенностей синтеза сидерофоров бактериями и их использования растениями позволит создать эффективные
микробиологические препараты для повышения плодородия почв и увеличения биомассы растений, что весьма актуально
для устойчивого земледелия.
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety
of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These
microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions.. discuss the diverse chemical nature
of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe–siderophore
complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and
the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial
colonies. Further analysis of biochemical, molecular–biological, and physiological features of siderophore synthesis by bacteria
and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing
plant biomass, which is highly relevant for sustainable agriculture.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Xojimuratova M.A. | tayanch doktorant | Fundamental va amaliy tadqiqotlar instituti |
№ | Name of reference |
---|---|
1 | 1. Miethke M., Marahiel M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. [DOI] [PMC free article] [PubMed] [Google Scholar] |
2 | 2. Ganz T., Nemeth E. Iron Homeostasis in Host Defence and Inflammation. Nat. Rev. Immunol. 2015;15:500–510. doi: 10.1038/nri3863. [DOI] [PMC free article] [PubMed] [Google Scholar] |
3 | 3. Briat J.-F., Dubos C., Gaymard F. Iron Nutrition, Biomass Production, and Plant Product Quality. Trends Plant Sci. 2015;20:33–40. doi: 10.1016/j.tplants.2014.07.005. [DOI] [PubMed] [Google Scholar] |
4 | 4. Tripathi D.K., Singh S., Gaur S., Singh S., Yadav V., Liu S., Singh V.P., Sharma S., Srivastava P., Prasad S.M., et al. Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance. Front. Environ. Sci. 2018;5:86. doi: 10.3389/fenvs.2017.00086. [DOI] [Google Scholar |
5 | 5. Singh P., Chauhan P.K., Upadhyay S.K., Singh R.K., Dwivedi P., Wang J., Jain D., Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front. Microbiol. 2022;13:898979. doi: 10.3389/fmicb.2022.898979. [DOI] [PMC free article] [PubMed] [Google Scholar |
6 | 6. Raymond K.N., Dertz E.A., Kim S.S. Enterobactin: An Archetype for Microbial Iron Transport. Proc. Natl. Acad. Sci. USA. 2003;100:3584–3588. doi: 10.1073/pnas.0630018100. [DOI] [PMC free article] [PubMed] [Google Scholar |
7 | 7. Li K., Chen W.-H., Bruner S.D. Microbial Siderophore-Based Iron Assimilation and Therapeutic Applications. BioMetals. 2016;29:377–388. doi: 10.1007/s10534-016-9935-3. [DOI] [PubMed] [Google Scholar] |
8 | 8. Ratledge C., Dover L.G. Iron Metabolism in Pathogenic Bacteria. Annu. Rev. Microbiol. 2000;54:881–941. doi: 10.1146/ annurev.micro.54.1.881. [DOI] [PubMed] [Google Scholar] |
9 | 9. Dertz E.A., Xu J., Stintzi A., Raymond K.N. Bacillibactin-Mediated Iron Transport in Bacillus s Ubtilis. J. Am. Chem. Soc. 2006;128:22–23. doi: 10.1021/ja055898c. [DOI] [PubMed] [Google Scholar] |
10 | 10. Campestre M.P., Castagno L.N., Estrella M.J., Ruiz O.A. Lotus Japonicus Plants of the Gifu B-129 Ecotype Subjected to Alkaline Stress Improve Their Fe2+ Bio-Availability through Inoculation with Pantoea Eucalypti M91. J. Plant Physiol. 2016;192:47–55. doi: 10.1016/j.jplph.2016.01.001. [DOI] [PubMed] [Google Scholar] |
11 | 11. Timofeeva A., Galyamova M., Sedykh S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants. 2022;11:2119. doi: 10.3390/plants11162119. [DOI] [PMC free article] [PubMed] [Google Scholar |
12 | 12. Pankievicz V.C.S., do Amaral F.P., Ané J.-M., Stacey G. Diazotrophic Bacteria and Their Mechanisms to Interact and Benefit Cereals. Mol. Plant-Microbe Interact. 2021;34:491–498. doi: 10.1094/MPMI-11-20-0316-FI. [DOI] [PubMed] [Google Scholar] |
13 | 13.Latha P., Anand T., Ragupathi N., Prakasam V., Samiyappan R. Antimicrobial Activity of Plant Extracts and Induction of Systemic Resistance in Tomato Plants by Mixtures of PGPR Strains and Zimmu Leaf Extract against Alternaria Solani. Biol. Control. 2009;50:85–93. doi: 10.1016/j.biocontrol.2009.03.002. [DOI] [Google Scholar] |
14 | 14. Alam A. Soil Degradation: A Challenge to Sustainable Agriculture. Int. J. Sci. Res. Agric. Sci. 2014;1:52. doi: 10.12983/ ijsras-2014-p0050-0055. [DOI] [Google Scholar] |
15 | 15. Sultana S., Alam S., Karim M.M. Screening of Siderophore-Producing Salt-Tolerant Rhizobacteria Suitable for Supporting Plant Growth in Saline Soils with Iron Limitation. J. Agric. Food Res. 2021;4:100150. doi: 10.1016/j.jafr.2021.100150. [DOI] [Google Scholar] |
16 | 16. Hofmann M., Heine T., Malik L., Hofmann S., Joffroy K., Senges C.H.R., Bandow J.E., Tischler D. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms. 2021;9:111. doi: 10.3390/ microorganisms9010111. [DOI] [PMC free article] [PubMed] [Google Scholar] |
17 | 17. De Serrano L.O. Biotechnology of Siderophores in High-Impact Scientific Fields. Biomol. Concepts. 2017;8:169–178. doi: 10.1515/bmc-2017-0016. [DOI] [PubMed] [Google Scholar] |
18 | 18. Szparaga A., Kuboń M., Kocira S., Czerwińska E., Pawłowska A., Hara P., Kobus Z., Kwaśniewski D. Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation. Sustainability. 2019;11:4575. doi: 10.3390/su11174575. [DOI] [Google Scholar] |
19 | 19. Mannino G., Gentile C., Ertani A., Serio G., Bertea C.M. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture. 2021;11:212. doi: 10.3390/ agriculture11030212. [DOI] [Google Scholar |
20 | 20. Castiglione A.M., Mannino G., Contartese V., Bertea C.M., Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants. 2021;10:1533. doi: 10.3390plants10081533. [DOI] [PMC free article] [PubMed] [Google Scholar] |
21 | 21. Baars O., Zhang X., Morel F.M.M., Seyedsayamdost M.R. The Siderophore Metabolome of Azotobacter Vinelandii. Appl. Environ. Microbiol. 2016;82:27–39. doi: 10.1128/AEM.03160-15. [DOI] [PMC free article] [PubMed] [Google Scholar] |
22 | 22. Romero-Perdomo F., Abril J., Camelo M., Moreno-Galván A., Pastrana I., Rojas-Tapias D., Bonilla R. Azotobacter Chroococcum as a Potentially Useful Bacterial Biofertilizer for Cotton (Gossypium hirsutum): Effect in Reducing N Fertilization. Rev. Argent. Microbiol. 2017;49:377–383. doi: 10.1016/j.ram.2017.04.006. [DOI] [PubMed] [Google Scholar |
23 | 23. Mishra A., Baek K.-H. Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules. 2021;11:705. doi: 10.3390/biom11050705. [DOI] [PMC free article] [PubMed] [Google Scholar |
24 | 24. Kesaulya H., Hasinu J.V., Tuhumury G.N. Potential of Bacillus Spp Produces Siderophores Insuppressing Thewilt Disease of Banana Plants. IOP Conf. Ser. Earth Environ. Sci. 2018;102:012016. doi: 10.1088/1755-1315/102/1/012016. [DOI] [Google Scholar] |
25 | 25. Sandy M., Butler A. Chrysobactin Siderophores Produced by Dickeya Chrysanthemi EC16. J. Nat. Prod. 2011;74:1207– 1212. doi: 10.1021/np200126z. [DOI] [PMC free article] [PubMed] [Google Scholar |
26 | 26. Sah S., Singh R. Siderophore: Structural And Functional Characterisation—A Comprehensive Review. Agric. 2015;61:97– 114. doi: 10.1515/agri-2015-0015. [DOI] [Google Scholar |
27 | 27. Zhang W., Zhang Y., Wang X., Ding F., Fu Y., Zhao J., Song W., Opiyo O.J., Zhang F., Chen X. Siderophores in Clinical Isolates of Klebsiella Pneumoniae Promote Ciprofloxacin Resistance by Inhibiting the Oxidative Stress. Biochem. Biophys. Res. Commun. 2017;491:855–861. doi: 10.1016/j.bbrc.2017.04.108. [DOI] [PubMed] [Google Scholar] |
28 | 28. Singh R.K., Singh P., Li H.-B., Guo D.-J., Song Q.-Q., Yang L.-T., Malviya M.K., Song X.-P., Li Y.-R. Plant-PGPR Interaction Study of Plant Growth-Promoting Diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to Enhance Growth and Stress-Related Gene Expression in Saccharum Spp. J. Plant Interact. 2020;15:427–445. doi: 10.1080/17429145.2020.1857857. [DOI] [Google Scholar] |
29 | 29.Juma P.O., Fujitani Y., Alessa O., Oyama T., Yurimoto H., Sakai Y., Tani A. Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Methylobacterium Aquaticum Strain 22A. Front. Microbiol. 2022;13:921635. doi: 10.3389/fmicb.2022.921635. [DOI] [PMC free article] [PubMed] [Google Scholar] |
30 | 30. Hoshino Y., Chiba K., Ishino K., Fukai T., Igarashi Y., Yazawa K., Mikami Y., Ishikawa J. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia Farcinica. J. Bacteriol. 2011;193:441–448. doi: 10.1128/JB.00897-10. [DOI] [PMC free article] [PubMed] [Google Scholar] |