The simplified statistical linear model of the object under study is developed on the basis of experimental and statistical studies of the technological process of crushing the cottonseed of an oil extraction plant using the experimental design method. The analysis of the homogeneity of the dispersion, the significance of the coefficients of the linear model and the adequacy of the resulting model.
Yоg‗ ekstraksiyasi zavodidagi paxta chigitini yanchish texnologik jarayonini tajribali-statistik izlanishlar asosida mazkur jarayonning soddalashgan chiziqli statistik modeli tajribani rejalashtirish metodidan foydalanib qurildi. Tajriba-statistik ma‘lumotlar dispersiyasini bir jinsliligi, chiziqli modelning koeffitsientlarini ishonchliligi va modelning jarayonga adekvatligi tahlil qilindi.
The simplified statistical linear model of the object under study is developed on the basis of experimental and statistical studies of the technological process of crushing the cottonseed of an oil extraction plant using the experimental design method. The analysis of the homogeneity of the dispersion, the significance of the coefficients of the linear model and the adequacy of the resulting model.
На основе экспериментально-статистических исследований технологического процесса дробления семени хлопчатника маслоэкстракционного производства разрабатывается упрошенная статистическая линейной модель исследуемого объекта с помощью метода планирования эксперимента. Проведен анализ однородности дисперсии, значимости коэффициентов линейной модели и адекватность полученной модели
№ | Name of reference |
---|---|
1 | 1. Production process regulations. For the production of cotton mint according to the scheme of double peeling, separation and grinding of the kernel with a capacity of 800 tons/day of cottonseeds. ТР 1602-28-12-08. Tashkent, 2008. – 93 p |
2 | 2. Rebrova I.A. Planning an experiment: study guide. - Omsk: SibADI, 2010. – 105 p. |
3 | 3. Akhnazarova S.A., Kafarov V.V. Optimization of an experiment in chemistry and chemical technology. - M .: Higher school, 1978, 319 p. |
4 | 4. Rykov V.V., Itkin V.Yu. Mathematical statistics and experiment planning. M .: RGUNG named by Gubkin, 2009. – 303 p. |
5 | 5. Terekov L. L and others. Mathematical methods and models in the planning of the experiment. Textbook for university students - Kiev: high school 1981. |
6 | 6. Barabashuk V.I., Kredenper B.P., Miroshnichenko V.I. Planning an experiment in engineering.- Kiev: Technique, 1984.- 200 p. |
7 | 7. Rumshisky L.Z. Mathematical processing of the results of the experiment. -M .: Science, 1971.- 192 p. |
8 | 8. Boards B.Ya., Yakovlev S.A. Modeling systems. - M .: higher school, 1985.- 271 p. |
9 | 9. Kashuba S.B., Shevchenko S.G. Software development for the implementation of a set of functional tasks for operational dispatch management of business processes at a production site / S. B. Kashuba, S. G. Shevchenko // Nov. Technolog. - 2010. - № 3 (29). - 73-81 p |
10 | 10.Oksanich IG, Kashuba S.V., Mathematical model of functioning of the production site / IG. Oksanich, S.V. Kashuba // System Technologies, 2 (61), 2009. - 3-9 p. |