Abstract. In this paper, it is shown that the solutions of the Toda-type chain with self-consistent source can be found by the inverse scattering method for the discrete Sturm-Liuville operator
Abstract. In this paper, it is shown that the solutions of the Toda-type chain with self-consistent source can be found by the inverse scattering method for the discrete Sturm-Liuville operator
Annotatsiya. Mazkur ishda sochilish nazariyasining teskari masalasi usuli moslangan manbali Toda zanjiri turidagi tenglamani integrallashga tadbiq etilgan.
Аннотация. В этой работе метод обратной задачи теории рассеяния применяется к интегрированию уравнения типа цепочки Тоды с самосогласованным источником.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Babajanov B.A. | UrDU |
№ | Name of reference |
---|---|
1 | Toda M.: One-dimensional dual transformation. J. Phys. Soc. Japan. 22, 431- 436 (1967) |
2 | 2. Toda M.: Wave propagation in anharmonic lattice. J. Phys. Soc. Japan. 23, 501- 506 (1967) |
3 | Flaschka H. Toda lattice. I. Phys.Rev. B9, 1924-1925 (1974 |
4 | Khanmamedov Ag. Kh.: The rapidly decreasing solution of the initial-boundary value problem for the Toda lattice. Ukrainskiy mathematiceskiy journal. 57, 1144 - 1152 (2005) |
5 | Mel‘nikov V. K.: A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane Commun. Math. Phys. 112 639– 52, 1987 |
6 | Mel‘nikov V. K.: Integration method of the Korteweg-de Vries equation with a self-consistent source Phys.Lett. A 133 493–6, 1988 |
7 | Mel‗nikov V. K. Integration of the Korteweg-de Vries equation with a source Inverse Problems 6 233–46, 1990. |
8 | Urazboev G. U.: Toda lattice with a special self-consistent source. Theoret. and Math. Phys. 154, 305-315 (2008) |
9 | ys. Rev. E 67 026609-1 26. Case K, Kac M.: A discrete version of the inverse scattering problem. J.Math.Phys. 14, 594-603 (1973) |