Ushbu ishda Kaputo Fabritsio operatorli integro-differensial tenglama uchun Grin funksiyasi usulida yechimi topilgan chegaraviy masala qaralgan. Bu yerda butun tartibli differensial tenglamaga keltiriladigan integro-differensial tenglamalar tadqiq etilgan. Topilgan yechim xususiy holda to‘lqin tipidagi tenglama uchun Dirixle masalasini yechishda qo‘llanilgan. Olingan natija xususiy hosilali integro-differensial tenglamalar uchun teskari masalalarni yechishga ishlatilishi mumkin
В этой работе представлено решение краевой задачи интегро-дифференцильного уравнения с оператором Капуто-Фабрицио, полученное методом функции Грина. Здесь рассмотрены интегро-дифференциальные уравнения, которые приводятся к дифференциальным уравнениям целого порядка. Полученное решение использовано при решении задачи Дирихле для уравнения в частных производных волнового типа. Отметим, что результат может быть использован в исследовании обратных задач для уравнений в частных производных
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Mirzayeva M.M. | Master student | Ferghana State University |
№ | Name of reference |
---|---|
1 | A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential equations. North-Holland Mathematics Studies, Elsevier, New York-London, 2006. |
2 | V.V.Uchaikin. Fractional Derivatives for Physicists and Engineers. Fractional Derivatives for Physicists and Engineers: Background and Theory. Nonlinear Physical Science. Higher Education Press, 2012 |
3 | Valerio, D., Trujillo, J.J., Rivero, M. et al. Fractional calculus: A survey of useful formulas. Eur. Phys. J. Spec. Top. 2013, 222, 1827-1846. |
4 | M. Caputo, M. Fabrizio. A New Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl., 2015, 1(2), pp.73-85. |
5 | A. Atangana. On the New Fractional Derivative and Application to Nonlinear Fishers Reaction-Diffusion Equation. App. Math. Comp., 2016, 273, pp.948-956 |
6 | J. Hristov. Transient Heat Diffusion with a Non-Singular Fading Memory. Thermal science, 2016, 20(2), pp. 757-762. |
7 | A. Alsaedi et al. Fractional electrical circuits. Advances in Mechanical Engineering, 2015, 7(12), 17 p. |
8 | A. Atangana, S.T.Badr. New Model of Groundwater Flowing within a Confine Aquifer: Application of Caputo-Fabrizio Derivative. Arabian Journal of Geosciences, 2016, 9(8), doi:10. 1007/s12517-015-2060-8. |
9 | N. Al-Salti, E.Karimov, K.Sadarangani. On a Differential Equation with Caputo-Fabrizio Fractional Derivative of Order 1 < β < 2 and Application to Mass-Spring-Damper System. Progr. Fract. Differ. Appl., 2016, 2(4), pp.257-263 |
10 | M. Al-Refai. Reduction of order formula and fundamental set of solutions for linear fractional differential equations, Appl. Math. Lett., 2018, 82, pp.8-13. |
11 | M. Al-Refai, K. Pal. New aspects of Caputo-Fabrizio fractional derivative, Prog. Fract. Differ. Appl., 2019, 5(2), pp.157-166. |
12 | A. Cabada. Green’s Functions in the Theory of Ordinary Differential Equations. Springer: Briefs in Mathematics. Springer, Berlin, 2014. |
13 | A. Cabada, J.A. Cid, B. Maquez-Villamarin. Computation of Green’s functions for boundary value problems with Mathematica, Applied Mathematics and Computation, 2012, 219, pp.1919-1936. |