119

In this paper we propose a method for finding multi-soliton solutions of the matrix Korteweg-de Vries equation with a self-consistent source

  • Read count 96
  • Date of publication 01-01-2018
  • Main LanguageIngliz
  • Pages16
English

In this paper we propose a method for finding multi-soliton solutions of the matrix Korteweg-de Vries equation with a self-consistent source

Ўзбек

Бу мақолада мосланган манбали матрицавий Кортевег-де Фриз тенгламасининг кўпсолитонли ечимларини топиш усули келтирилган.

Русский

В данной работе предлагается метод для нахождения многосолитонных решений матричного уравнения Кортевега-де Фриза с самосогласованным источником.

Author name position Name of organisation
1 Urazbev G.U. Amaliy matematika kafedrasi dotsenti UrDU
2 Hoitmetov U.A. Amaliy matematika kafedrasi mudiri (Urgench branch of the TUIT)
Name of reference
1 Mel‘nikov V. K. A direct method for deriving a multi-soliton solution for the problem of interaction ofwaves on the x, y plane Commun. Math. Phys. 112 (1987) 639-652
2 Mel‘nikov V.K. Integration method of the KdV equation with a selfconsistent source Phys. Lett.A 133 (1988) 493
3 Mel'nikov V.K. Integration of the nonlinear Schroedinger equation with a self-consistent source Commun. Math.Phys.137(1991) 359
4 Leon J. and Latifi A. Solution of an initial-boundary value problem for coupled nonlinear waves J. Phys.A: Math. Gen. 23(1990)1385
5 Shchesnovich V.S. and Doktorov E.V. Modified Manakov system with self-consistent source Phys. Lett.A 213 (1996)23
6 Lax P.D. Integrals of Nonlinear Equations of Evolution and Solitary WavesCommun. Pure and Appl. Math., 21 (1968), 467
7 Martinez Alonso L., Olmedilla E., Trace identities in the inverse scattering transform method associated with matrix Schrödinger operatorsJ. Math. Phys., 23:11 (1982), 2116
Waiting