The creation of a model for calculating and analyzing small gases is an urgent task in modern science and practice. The proposed model for calculating the concentration of tropospheric gases makes it possible to calculate the change in the values of seven chemical elements depending on the initial value of nitrogen oxide, nitrogen dioxide and carbon monoxide. The results of the comparative analysis show that the proposed model of tropospheric chemistry with the initial data, reaction rate constants and values of the drop and loss, basically, adequately describes the photochemical processes occurring in the near-surface urban (Tashkent) layer.
The performed quantitative estimates of the accuracy of the model in comparison with the observed data showed, within the acceptable error, that the values of ozone and carbon monoxide calculated by the model do not coincide in percentage relative to the absolute values by 7.1% and 2%. In the future, it is necessary, on the basis of numerical experiments, for example, by iteration methods, to optimize the coefficients for small gases, which are of anthropogenic nature.
The creation of a model for calculating and analyzing small gases is an urgent task in modern science and practice. The proposed model for calculating the concentration of tropospheric gases makes it possible to calculate the change in the values of seven chemical elements depending on the initial value of nitrogen oxide, nitrogen dioxide and carbon monoxide. The results of the comparative analysis show that the proposed model of tropospheric chemistry with the initial data, reaction rate constants and values of the drop and loss, basically, adequately describes the photochemical processes occurring in the near-surface urban (Tashkent) layer.
The performed quantitative estimates of the accuracy of the model in comparison with the observed data showed, within the acceptable error, that the values of ozone and carbon monoxide calculated by the model do not coincide in percentage relative to the absolute values by 7.1% and 2%. In the future, it is necessary, on the basis of numerical experiments, for example, by iteration methods, to optimize the coefficients for small gases, which are of anthropogenic nature.
Создание модели для расчѐта и анализа малых газов является актуальной задачей в современной науке и практике. Предлагаемая модель для расчѐта концентрации тропосферных газов дает возможность рассчитывать изменение значений семи химических элементов в зависимости от начального значения оксида азота, диоксида азота и оксида углерода. Результаты сравнительного анализа показывают, что предложенная модель химии тропосферы с исходными данными, константами скорости реакции и значениями перепада и потерь, в основном, адекватно описывает фотохимические процессы, происходящие в приповерхностном городском (Ташкент) слое.
Выполненные количественные оценки точности работы модели в сравнении с наблюдѐнными данными показали в пределах допустимой ошибки, что значения озона и окиси углерода, рассчитанные по модели, не совпадают в процентах относительно абсолютных значений на 7,1% и 2%. В дальнейшем необходимо на основании численных экспериментов, например, методами итераций, выполнить оптимизацию коэффициентов для малых газов, имеющие антропогенную природу.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Shermuhamedov U.A. | Junior Researcher | The Institute of Seismology of the Academy of Sciences of the Republic of Uzbekistan |
№ | Name of reference |
---|---|
1 | Akimoto Hajime (2016), Atmospheric Reaction Chemistry (Springer Atmospheric Sciences), Springer, Japan, 433 p. |
2 | Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J. (2004), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx, and SOx species, Atmospheric Chemistry and Physics, 4, pp. 1461–1738. |
3 | Barret B., Le Flochmoen E., Sauvage B., Pavelin E., Matricardi M. and Cammas J.P. (2004), The detection of post-monsoon tropospheric ozone variability over south Asia using IASI data, Atmospheric Chemistry and Physics, 11, pp. 9533–9548. |
4 | Blunden J. and Arndt D.S. (2017), State of the Climate in 2016, Bulletin of The American Meteorological Society, vol. 98, No 8, Si–S277, doi: 10.1175/2017BAMSStateoftheClimate.1. |
5 | Cohen A.J., Brauer M., Burnett R. et al. (2015), Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study, Lancet, 389 (10082), pp. 1207-1218, DOI: https://doi.org/10.1016/S0140- 6736(17)30505-6 |
6 | Dons E. (2016), Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring,Atmospheric Environment,213, pp. 424-432. |
7 | Draxler R.R. and Hess G.D. (1998), An overview of the HYSPLIT_4 modeling system for trajectories, dispersion and deposition, Australian Meteorological Magazine, 47, pp. 295-308. |
8 | Henze D.K., Hakami A. and Seinfeld J.H. (2007), Development of the adjoint of GEOSChem, Atmospheric Chemistry and Physics, 7, pp. 2413–2433. |
9 | Mark R., Tinsley and Richard J.Field (2001), Dynamic instabi lity in tropospheric photochemistry: an excitability threshold, Geophysical research letters, vol. 28, No 23, pp. 4437- 4440. |
10 | Ravshnov N., Sharipov D., Muradov F. (2016), Computational experiment for forecasting and monitoring the environmental Condition of industrial region, Theoretical & Applied Science. International Scientific Journal, vol. 35, Issue 3, pp. 132-139. |
11 | Sharipov D.A. (2016), Mathematical Model and Computational experiment for the Study and Forecast of the concentration of Harmful Substances in the Atmosphere, American Journal of Computation, Communication and Control, No 2 (6), pp. 48-54. |
12 | Tinsley M.R., Field R.J. (2001), Dynamic instability in tropospheric photochemistry an excitability threshold, Geophysical Research Letters, vol. 28, No 23, pp. 4437-4440. |
13 | Kozlov O.S., Skvortsov L.M., Khodakovsky V.V. Solution of differential and differential - algebraic equations in the program complex "MHTU". The article is available on the website http://model.exponenta.ru/mvtu/20051121.html |
14 | Shermukhamedov A.A., Shermukhamedov U.A. (2017), Calculation method and evaluation criteria for a nonlinear model of tropospheric gas concentration, Scientific notes No 44. Meteorology, pp. 180-186. |
15 | Shermukhamedov A.A., Shermukhamedov U.A. (2015), Criteria for the equilibrium, vibrational and chaotic behavior of a nonlinear model of tropospheric ozone concentrations, Reports of the Academy of Sciences of the Republic of Uzbekistan, No. 1, pp. 33-37. |