186

The paper represents infrared laser and digital camera-based equipment for the measurement of gap and flushness on the automobile. The system is based on the smartphone that is used as camera and database, while the red laser is targeted as a measurement tool. The method used to measure the gap and flushness is based on laser triangulation. The camera on the smartphone captures the laser line projected on the body of the automobile and serves as database of captured photos. The measurement algorithm is done on a remote computer-based algorithm that serves as computation station for gap and flushness measurement. Experiments are done on real car body in laboratory conditions. The process is done as an effective replacement of operator’s gap and flushness measurement in the production process. The results enable to eliminate the operators’ error and help to implement semi-automatic measurement system in the production plan.

  • Read count 186
  • Date of publication 26-02-2021
  • Main LanguageIngliz
  • Pages46-58
Ўзбек

Ушбу мақола инфрақизил лазер ва рақамли камера асосида автомобиль кузовидаги оралиқ масофаларни ўлчаш ускунасидан фойдаланиш таҳлилига бағишланган. Тизимнинг ажралмас қисми смартфон бўлиб, у камера ва маълумотлар базаси, инфрақизил лазер эса ўлчов воситаси сифатида ишлатилади. Оралиқ масофани ўлчаш усули лазер триангуляциясига асосланган. Смартфондаги камера автомобиль кузовига йўналтирилган лазер линиясини расмга олади ва рақамли фильтрлардан ўтказади. Ҳисоб-китоблар махсус алгоритм асосида хизмат қилувчи компьютерда бажарилади. Тажрибалар лаборатория шароитида ҳақиқий автомобил кузовида олиб борилди. Ушбу технология ишлаб чиқариш жараёнида қўлда операторлар томонидан ўлчаш учун самарали аналог сифатида ишлай олади. Олинган натижалар инсон омилини бартараф этиш ва ишлаб чиқариш жараёнида ярим автоматик ўлчаш тизимини амалга оширишга ёрдам беради.

Русский

Данная статья рассматривает применение бесконтактного оборудования на основе инфракрасного лазера и цифровой фотокамеры для измерения зазора на кузове автомобиля. Составной частью системы является смартфон, который используется в качестве камеры и базы данных, в то время как инфракрасный лазер – в качестве измерительного инструмента. Метод, используемый для измерения зазора, основан на лазерной триангуляции. Камера на смартфоне фиксирует лазерную линию, проецируемую на кузов автомобиля. Алгоритм измерения выполняется на удаленном компьютере, который служит вычислительной станцией для измерения зазора и промывки. Эксперименты проводятся на реальном кузове автомобиля в лабораторных условиях. Этот процесс является эффективной заменой ручного измерения зазора в производственном процессе. Полученные результаты позволяют исключить ошибки операторов и помогают внедрить полуавтоматическую измерительную систему в производственный процесс.

English

The paper represents infrared laser and digital camera-based equipment for the measurement of gap and flushness on the automobile. The system is based on the smartphone that is used as camera and database, while the red laser is targeted as a measurement tool. The method used to measure the gap and flushness is based on laser triangulation. The camera on the smartphone captures the laser line projected on the body of the automobile and serves as database of captured photos. The measurement algorithm is done on a remote computer-based algorithm that serves as computation station for gap and flushness measurement. Experiments are done on real car body in laboratory conditions. The process is done as an effective replacement of operator’s gap and flushness measurement in the production process. The results enable to eliminate the operators’ error and help to implement semi-automatic measurement system in the production plan.

Name of reference
1 Lee S.-H., Jun C.-H., Jung J., Kim T.-S., Lee J.-H. Identifying sources of dimensional variation affecting assembly quality of automobiles, in the 9th Asia Pacific Industrial Engineering & Management Systems Conference, 2008, pp. 753-759.
2 Castellini P., Cristalli C., Foehr M., Leitão P., Paone N., Schjolberg I., Tjønnås J., Turrin C., Wagner T. Towards the integration of process and quality control using multi-agent technology. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011, vol. 6119347, pp. 421-426.
3 Cristalli C., Foehr M., Jager T., Leitao P., Paone N., Castellini P., Turrin C., Schjolberg I. Integration of process and quality control using multi-agent technology. In Proceedings of the IEEE 22nd International Symposium on Industrial Electronics, ISIE 2013, Taipei, Taiwan, 28-31 May 2013, Article number 6563737.
4 Web Site of the GOОDMAN Project. Available online:: www.go0dman-project.eu/ (accessed on 9 June 2020).
5 Rossi G., Crenna F. A probabilistic approach to measurement-based decisions. Measurement 2006, 39, pp. 101-119.
6 Mari L., Petri D. The metrological culture in the context of big data: Managing data-driven decision confidence. IEEE Instrum. Meas. Mag. 2017, 20, pp. 4-20.
7 Minnetti E., Chiariotti P., Castellini P., Violini L., Garcia G., Vicente H., Paone N. Smart portable laser triangulation system for assessing gap and flush in car body assembly line. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, 2019, pp. 49-53.
8 Kosmopoulos D., Varvarigou T. Automated inspection of gaps on the automobile production line through stereo vision and specular reflection. Computers in Industry, vol. 46, DOI 10.1016/ S0166-3615(01)00113-0, 2001, no 1, pp. 49-63.
9 Kumar S., Tiwari P. K. , Chaudhury S.B. An optical triangulation method for non-contact profile measurement, IEEE International Conference on Industrial Technology, DOI 10.1109/ ICIT.2006.372653, 2006, pp. 2878-2883.
10 Tran T.-T., Ha C. Non-contact gap and flush measurement using monocular structured multi-line light vision for vehicle assembly, International Journal of Control, Automation and Systems, vol. 16, DOI 10.1007/s12555-017-0535-y, 2018, no. 5, pp. 2432-2445.
11 Ez3d. EZ Metrology. (2019). [Online]. Available: www.ezmetrology. com/prod 3d.php
12 Pribanic T., Petkovic T., Donlic M., Angladon V., Gasparini S. 3d structured light scanner on the smartphone. In International Conference on Image Analysis and Recognition, 2016.
13 Gap gun pro. Third Dimension Software Ltd. (2019). Available: www.third.com/products/ product-range/gapgun-pro
14 Lasergauge systems. Linear Measurement Instruments Corp. (2019). Available: www. lmicorporation.com/LaserGaugeSystems
15 In-sight laser profiler. Cognex Corporation. (2020). Available: www.cognex.com/products/ machine-vision/3d-laser-profi lers/in-sight-laser-profi ler
16 Minnetti E., Chiariotti P., Castellini P., Violini L., Garcia G., Vicente H., Paone N. Smart portable laser triangulation system for assessing gap and flush in car body assembly line. In 2019 II Workshop on Metrology for Industry 4.0 and IoT, DOI 10.1109/METROI4.2019.8792858, 2019, pp. 49-53.
17 Lavrinov D.S., Khorkin A.I. Problems of internal calibration of precision laser triangulation 2D scanners. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, 2016, pp. 1-4.
18 Trucco E., Fisher R.B., FitzGibbon A.W. Direct Calibraction and Data Consistency in 3-D Laser Scanning; University of Edinburgh: Edinburgh, UK, 1994.
19 Khusnuddinov F., Kholkhujaev J. Development and implementation of non-contact measuring machine in the automobile industry of GM Uzbekistan ACTA, Scientific journal of Turin Polytechnic University in Tashkent. ADEX 2018, International Conference, Tashkent, vol. 8, 2019, ISS3.
20 Kholkhujaev J., Horinov Sh. A new methods of choosing contact Coordinate Measuring Machines for smal-scale production industries. ACTA, Scientific journal of Turin Polytechnic University in Tashkent, 2019, vol. 8, Iss.1.
Waiting