20

This article examines the transformative role of neural networks in econometrics and financial decision-making, emphasizing their influence on personal finance, automation, healthcare, transportation, and human-computer interaction. Neural networks, inspired by the structure of the human brain, have the potential to revolutionize these sectors by enhancing efficiency, accuracy, and decision-making capabilities. In personal finance, they can optimize budgeting, savings, and expenditure management through automated models such as the McCulloch-Pitts neuron. In healthcare, neural networks improve diagnostic capabilities and enable predictive treatment. The article also highlights the applications of neural networks in econometrics to analyze financial patterns, detect fraud, and manage risks more effectively. However, it also addresses the ethical concerns related to data privacy, security, and biases in algorithmic decision-making, stressing the importance of responsible development. Ultimately, it concludes that, despite the challenges, the benefits of integrating neural networks into econometric models and financial systems are substantial and indispensable for modern advancements.

  • Read count 20
  • Date of publication 16-12-2024
  • Main LanguageIngliz
  • Pages185-190
Ўзбек

Ushbu maqolada neyron tarmoqlarning ekonometriya va moliyaviy qaror qabul qilishdagi o‘rni, shuningdek, ularning shaxsiy moliya, avtomatlashtirish va inson kompyuter o‘zaro aloqasiga ta’siri ko‘rib chiqiladi. Inson miyasi tuzilmasidan ilhomlangan neyron tarmoqlar ushbu sohalarda samaradorlik, aniqlik va qaror qabul qilish qobiliyatlarini yaxshilash orqali inqilob qilish imkoniyatiga ega. Shaxsiy moliyada ular McCulloch-Pitts neyron kabi avtomatlashtirilgan modellar yordamida byudjetlash, jamg‘arma va xarajatlarni boshqarishni optimallashtirishi mumkin. Sog‘liqni saqlash sohasida esa neyron tarmoqlar diagnostika imkoniyatlarini yaxshilaydi va prognozli davolashni ta’minlaydi. Maqolada, shuningdek, neyron tarmoqlarning ekonometriyada moliyaviy o‘zgarishlarni tahlil qilish, firibgarlikni aniqlash va risklarni samarali boshqarishdagi qo‘llanishi yoritiladi. Shu bilan birga, algoritmik qaror qabul qilishda ma’lumotlarning maxfiyligi, xavfsizligi va tarafkashlikka oid muammolar ham ko‘rib chiqilib, mas’uliyatli rivojlantirish zarurligi ta’kidlanadi. Umuman olganda, maqola neyron tarmoqlarni ekonometriya modellari va moliyaviy tizimlarga integratsiya qilish foydalari zamonaviy yutuqlar uchun juda katta va zarur ekanligini ko‘rsatadi.

Русский

В данной статье рассматривается трансформирующая роль нейронных сетей в эконометрике и принятии финансовых решений, подчеркивается их влияние на личные финансы, автоматизацию и взаимодействие человека с компьютером. Нейронные сети, вдохновленные структурой человеческого мозга, способны произвести революцию в этих секторах, повышая эффективность, точность и способности к принятию решений. В личных финансах они могут оптимизировать управление бюджетом, сбережениями и расходами с помощью автоматизированных моделей, таких как нейрон Маккалока-Питтса. В здравоохранении нейронные сети улучшают диагностические возможности и позволяют применять предиктивное лечение. В статье также рассматриваются применения нейронных сетей в эконометрике для анализа финансовых паттернов, обнаружения мошенничества и более эффективного управления рисками. Кроме того, рассматриваются этические вопросы, связанные с конфиденциальностью данных, безопасностью и предвзятостью в алгоритмическом принятии решений, подчеркивая важность ответственного развития. В конечном итоге делается вывод о том, что, несмотря на существующие трудности, преимущества интеграции нейронных сетей в эконометрические модели и финансовые системы значительны и необходимы для современных достижений.

English

This article examines the transformative role of neural networks in econometrics and financial decision-making, emphasizing their influence on personal finance, automation, healthcare, transportation, and human-computer interaction. Neural networks, inspired by the structure of the human brain, have the potential to revolutionize these sectors by enhancing efficiency, accuracy, and decision-making capabilities. In personal finance, they can optimize budgeting, savings, and expenditure management through automated models such as the McCulloch-Pitts neuron. In healthcare, neural networks improve diagnostic capabilities and enable predictive treatment. The article also highlights the applications of neural networks in econometrics to analyze financial patterns, detect fraud, and manage risks more effectively. However, it also addresses the ethical concerns related to data privacy, security, and biases in algorithmic decision-making, stressing the importance of responsible development. Ultimately, it concludes that, despite the challenges, the benefits of integrating neural networks into econometric models and financial systems are substantial and indispensable for modern advancements.

Author name position Name of organisation
1 Mirzayev S.N. - Qarshi muhandislik-iqtisodiyot instituti
Name of reference
1 Maxmatqulov, G. O. X. (2023). Savdo xizmatlari tarmog ‘ini rivojlantirish masalalariga tizimli yondoshuv. Educational Research in Universal Sciences, 2(10), 175-182.
2 McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.
3 Mukhitdinov, K. S., & Rakhimov, A. M. Рroviding accommodation and food services to the population of the region. International Journal of Trend in Scientific Research and Development (IJTSRD), eISSN, 2456-6470
4 Rakhimov, A. N., Makhmatkulov, G. K., & Rakhimov, A. M. (2021). Construction of econometric models of development of services for the population in the region and forecasting them. The American Journal of Applied sciences, 3(02), 21-48.
5 Raximov, A. N. (2023). Dehqon xo ‘jaliklari faoliyatining istiqbolli rivojlantirishga tasir etuvchi omillar. Экономика и социум, (3-2 (106)), 255-262.
6 Rumelhart, D. E., Hinton, G. E Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 1-19.., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
7 Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 1-19.
8 Xoliqulovich, J. A., Islomnur, I., & Normurodovich, M. S. (2023). Advanced control-goals and objectives. technologies of built-in advanced control in deltav APCS. Galaxy International Interdisciplinary Research Journal, 11(2), 357-362.
9 Жураев, Ф. (2021). Перспективные проблемы развития производство сельскохозяйственной продукции и их эконометрическое моделирование. Экономика И Образование, (4), 377-385.
Waiting