Deep learning technologies have significantly advanced the field of text
mining by enhancing the capability to process, analyze, and extract meaningful
information from vast amounts of unstructured text data. Key technologies include
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) for capturing
sequential dependencies in text, Convolutional Neural Networks (CNNs) for text
classification, and attention mechanisms and Transformers like BERT and GPT for
parallel processing and understanding context. Word embeddings (e.g., Word2Vec,
GloVe) provide semantic representations of words, while sequence-to-sequence models
enable applications such as text summarization and machine translation. Additionally,
self-supervised and zero-shot learning broaden the adaptability of models across various
text mining tasks. These technologies drive applications like sentiment analysis, entity
recognition, document summarization.
Deep learning texnologiyalari katta hajmdagi tuzilmagan matn
ma’lumotlaridan mazmunli ma’lumotlarni qayta ishlash, tahlil qilish va ajratib olish
qobiliyatini oshirib, Text mining sohasini sezilarli darajada rivojlantirdi. Asosiy
texnologiyalar qatoriga matndagi ketma-ket bog‘liqliklarni olish uchun takroriy neyron
tarmoqlari (RNN), uzoq qisqa muddatli xotira (LSTM), matn tasnifi uchun konvolyutsion
neyron tarmoqlari (CNN), diqqat mexanizmlari, parallel ishlov berish, kontekstni
tushunish uchun BERT va GPT kabi transformatorlar kiradi. So‘zlarni o‘rnatish
(masalan, Word2Vec, GloVe) so‘zlarning semantik ko‘rinishini ta’minlaydi, ketma-ketlik
modellari esa matnni umumlashtirish va mashina tarjimasi kabi ilovalarga imkon
beradi. Bundan tashqari, o‘z-o‘zini nazorat qilish va zero-shot o‘rganish turli xil Text
mining vazifalari bo‘yicha modellarning moslashuvini kengaytiradi. Ushbu
texnologiyalar hissiyotlarni tahlil qilish, obyektlarni aniqlash, hujjatlarni
umumlashtirish, mavzuni aniqlash kabi ilovalarni boshqaradi, bu esa matndan
avtomatlashtirilgan va aniq tushunchalarni olish imkonini beradi.
Технологии Deep learning значительно развили область Text
mining, увеличив возможности обработки, анализа и извлечения значимой
информации из больших объемов неструктурированных текстовых данных.
Ключевые технологии включают рекуррентные нейронные сети (RNN) для
извлечения последовательных связей в тексте, длинную кратковременную память
(LSTM), сверточные нейронные сети (CNN) для классификации текста,
механизмы внимания, параллельную обработку, BERT и GPT для понимания
контекста, включая такие преобразователи, как как Встраивание слов (например,
Word2Vec, GloVe) обеспечивает семантическое представление слов, а модели
последовательностей позволяют использовать такие приложения, как
суммирование текста и машинный перевод. Кроме того, самоконтроль и обучение
с нуля расширяют адаптируемость моделей к различным задачам анализа текста.
Эти технологии используются в таких приложениях, как анализ настроений,
обнаружение объектов, обобщение документов и определение.
Deep learning technologies have significantly advanced the field of text
mining by enhancing the capability to process, analyze, and extract meaningful
information from vast amounts of unstructured text data. Key technologies include
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) for capturing
sequential dependencies in text, Convolutional Neural Networks (CNNs) for text
classification, and attention mechanisms and Transformers like BERT and GPT for
parallel processing and understanding context. Word embeddings (e.g., Word2Vec,
GloVe) provide semantic representations of words, while sequence-to-sequence models
enable applications such as text summarization and machine translation. Additionally,
self-supervised and zero-shot learning broaden the adaptability of models across various
text mining tasks. These technologies drive applications like sentiment analysis, entity
recognition, document summarization.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Safarov L.S. | o'qituvchi | Qarshi davlat universiteti |
№ | Name of reference |
---|---|
1 | Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. arxiv preprint arxiv:1810.04805. |
2 | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 5998–6008. |
3 | Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training. OpenAI Blog. |
4 | Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural Language Processing. IEEE Computational Intelligence Magazine, 13(3), 55–75. |
5 | Norov A., Safarov L. The basics of natural language processing for uzbek text. // Amaliy matematika va informatsion texnologiyalarning dolzarb muammolari. Xalqaro anjuman tezislari to‘plami – 14-15 noyabr, Qarshi. –2019. – 219 b. |
6 | Safarov L, Norov A. Clustering of uzbek texts using the em-algorithm. //QarDU xabarlari 2022 6/1(56), B.53-55. |
7 | Safarov L., Norov A., Murodov Sh. Structural modules of the “automatic editing of uzbek texts” software package and their relative integration. //QarDU xabarlari 2023 1/1(57), B.11-15. |
8 | Сафаров Л.С. Использование технологии Text Mining при автоматической обработке текста. //”Экономика и социум” №1(104)-2 2023 www.iupr.ru . 639-643 ст. |
9 | Safarov L., Norov A. Ta’limda Text Mining texnologiyasi va undan samarali foydalanish. //“Algoritmlar va dasturlashning dolzarb muammolari” mavzusidagi Xalqaro ilmiy-amaliy anjuman materiallari to‘plami. 2023-yil 19-20 may. Qarshi. Qarshi DU. – 2023. B. 492-494. |
10 | Safarov L. Matnlarni intellektual tahlil qilishda Text Mining texnologiyasining o‘rni. //“Algoritmlar va dasturlashning dolzarb muammolari” mavzusidagi Xalqaro ilmiy-amaliy anjuman materiallari to‘plami. 2023-yil 19-20 may. Qarshi. Qarshi DU. – 2023. B.687-689. |
11 | Белоусов Ф.К., & Кузнецова И.Б. Технологии искусственного интеллекта в образовании: от теории к практике. –Новосибирск: Сибирское университетское издательство. 2018. – 146 c. |