28

This research investigates the mechanical and tribological performance of four distinct types of composite materials under controlled deformation and operational conditions. Key properties such as tensile stress resistance, elastic recovery, thermal stability, and wear rate were systematically measured and analyzed. Using a combination of theoretical modeling, stress-strain graphical interpretation, and empirical observations through microscopic examination, the study offers a comparative evaluation across different loading configurations. The results indicate that specific composite variants—especially those reinforced with fibers or polymer matrices—exhibited exceptional durability, resistance to dynamic stress, and adaptability to high-speed and high-temperature industrial environments. Furthermore, the findings underscore the potential of advanced composite solutions to replace traditional metallic materials, significantly extending the operational life of critical components in light industry machinery. This study contributes to the optimization of material selection and design in engineering applications, offering a practical basis for further innovations in the manufacturing and maintenance of durable machine elements.

  • Read count 28
  • Date of publication 28-09-2025
  • Main LanguageIngliz
  • Pages200-204
English

This research investigates the mechanical and tribological performance of four distinct types of composite materials under controlled deformation and operational conditions. Key properties such as tensile stress resistance, elastic recovery, thermal stability, and wear rate were systematically measured and analyzed. Using a combination of theoretical modeling, stress-strain graphical interpretation, and empirical observations through microscopic examination, the study offers a comparative evaluation across different loading configurations. The results indicate that specific composite variants—especially those reinforced with fibers or polymer matrices—exhibited exceptional durability, resistance to dynamic stress, and adaptability to high-speed and high-temperature industrial environments. Furthermore, the findings underscore the potential of advanced composite solutions to replace traditional metallic materials, significantly extending the operational life of critical components in light industry machinery. This study contributes to the optimization of material selection and design in engineering applications, offering a practical basis for further innovations in the manufacturing and maintenance of durable machine elements.

Русский

Данное исследование посвящено изучению механических и трибологических характеристик четырёх видов композитных материалов, испытанных в контролируемых условиях деформации и нагрузки. Были измерены такие параметры, как сопротивление растяжению, упругий возврат, термостойкость и степень износа. Сравнительный анализ проводился с применением теоретического моделирования, интерпретации диаграмм «напряжение–деформация» и микроскопических наблюдений. Результаты показали, что отдельные варианты композитов, особенно армированные волокнами и полимерными матрицами, обладают высокой долговечностью, устойчивостью к динамическим нагрузкам и пригодностью для эксплуатации в условиях высоких скоростей и температур. Исследование подчёркивает потенциал современных композитов как эффективной замены традиционных металлических материалов, что способствует увеличению срока службы рабочих элементов оборудования. Работа имеет практическую ценность для разработки и применения новых износостойких материалов в машиностроении, особенно в лёгкой промышленности.

Ўзбек

Ushbu tadqiqot to‘rtta turdagi kompozitsion materiallarning deformatsiyalangan sharoitlarda va turli ish yuklamalarida ko‘rsatgan mexanik va tribologik xususiyatlarini chuqur o‘rganadi. Tajriba davomida tortilishga chidamlilik, elastiklik, issiqlikka barqarorlik va yeyilish darajasi kabi muhim parametrlar aniqlanib, grafik va mikroskopik tahlillar asosida solishtirildi. Olingan natijalar shuni ko‘rsatdiki, ayrim zamonaviy tolali yoki polimer asosli kompozitsiyalar yuqori tezlikda ishlaydigan hamda yuqori haroratga bardoshli detallar uchun optimal yechim hisoblanadi. Tadqiqotdan kelib chiqqan holda, an’anaviy metall materiallar o‘rniga zamonaviy kompozitlarning samarali ishlatilishi nafaqat detalning ishlash muddatini uzaytiradi, balki mashinasozlikda texnologik ishonchlilikni ham oshiradi. Ushbu ish yengil sanoat mashinalarida mustahkam va yeyilishga chidamli detallarni loyihalash va ishlab chiqarishda ilmiy-amaliy asos yaratadi.

Name of reference
1 Imomaliyeva, Sh. F. (2022). Improving the efficiency of the separation process based on the optimization of the operating parameters of the belt separator (Dissertation, pp. 78–80).
2 Imomaliyeva, Sh. F., & Makhkamov, A. M. (2021). Pressure loss on cotton air transport pipelines. Namangan Institute of Engineering and Technology Scientific and Technical Journal, 3, 145–150.
3 Lee, J., & Choi, Y. (2022). Advances in composite materials for industrial applications. Composite Engineering.
4 Rahimov, A., & Muminov, F. (2020). Material science in textile equipment. Uzbek Engineering Journal.
5 Imomaliyeva, Sh., Akramzhanov, D., Makhkamov, A., & Turabboev, G‘. (2020, August 10). Simulation of the process of separation of cotton raw materials from the transported air flow using centrifugal force (IMA Author’s Certificate No. DGU 08906).
6 Imomaliyeva, Sh., Makhkamov, A., Akramzhanov, D., Khusanov, S., & Turabboev, G‘. (2020, October 16). Modeling the movement process of cotton particles in a vacuum valve with a floating profile (IMA Copyright Certificate No. DGU 09395).
7 Kwon, D., et al. (2023). Tribological testing of polymer composites in textile industry. Tribology International.
8 Smith, L., & Zhang, H. (2021). Surface treatment techniques. Materials Performance.
9 Xu, R. (2024). Application of GFRP in industrial equipment. International Journal of Polymer Science.
10 Akhmedov, B. (2023). Kompozitsion materiallarning yengil sanoatda qo‘llanilishi. Toshkent: Toshkent Davlat Texnika Universiteti
11 Wang, S., et al. (2024). Simulation and wear analysis of light industry gears. Mechanical Simulation Journal.
12 Kang, M., & Liu, T. (2023). Corrosion and wear in polymer-metal composites. Materials Chemistry and Physics.
13 Shukurov, K. (2024). Innovatsion materiallar. Ilmiy Yondashuvlar.
14 Petrova, L. (2022). Textolite materials. Eastern European Material Journal.
15 Park, H., & Moon, K. (2024). Dynamic mechanical behavior of reinforced materials. Advanced Machinery Materials.
Waiting