A diverse spectrum of diseases affects the biliary system, often presenting with similar clinical signs and symptoms. These conditions include gallstones, acute calculus cholecystitis, acute acalculus cholecystitis, Mirizzi syndrome, chronic cholecystitis, cholangitis (recurrent pyogenic, primary sclerosing, primary biliary, autoimmune), biliary tract malignancies, biliary tract cysts, and others. Metabolism also plays a role in the development of these diseases. This article discusses the role of lipid metabolism in the development of biliary diseases.
На желчевыводящую систему влияет широкий спектр заболеваний, которые часто проявляются сходными клиническими признаками и симптомами. К ним относятся камни в желчном пузыре, острый желчно-каменный холецистит, острый холецистит акакулуса, синдром Мириззи, хронический холецистит, холангит (рецидивирующий пиогенный, первичный склероз, первичный билиарный, аутоиммунный), опасные заболевания желчных протоков, желчи или кисты и другие. Метаболизм также играет роль в развитии этих заболеваний. В этой статье обсуждается роль липидного обмена в развитии заболеваний желчевыводящих путей.
A diverse spectrum of diseases affects the biliary system, often presenting with similar clinical signs and symptoms. These conditions include gallstones, acute calculus cholecystitis, acute acalculus cholecystitis, Mirizzi syndrome, chronic cholecystitis, cholangitis (recurrent pyogenic, primary sclerosing, primary biliary, autoimmune), biliary tract malignancies, biliary tract cysts, and others. Metabolism also plays a role in the development of these diseases. This article discusses the role of lipid metabolism in the development of biliary diseases.
Kasalliklarning xilma-xil spektri o’t-safro tizimga ta'sir qiladi, ko'pincha o'xshash klinik belgilar va simptomlar bilan namoyon bo'ladi. Ushbu holatlarga o't toshlari, o'tkir toshli xoletsistit, o'tkir akalkulus xoletsistit, Mirizzi sindromi, surunkali xoletsistit, xolangit (takroriy pyogenik, birlamchi sklerozlash, birlamchi biliar, autoimmun), safro yo'llarining xavfli kasalliklari, o't yo'llarining kistalari va boshqalar kiradi. Ushbu kasalliklarning rivojlanishida moddalar almashinuvi ham o’z ahamiyatiga ega. Ushbu maqolada lipid metabolizmining safro kasalliklarining rivojlanishidagi ahamiyati muhokama qilinadi.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Usmonov E.I. | . | Андижанский Государственный медицинский институт |
2 | Salaxidinov S.Z. | . | Андижанский Государственный медицинский институт |
3 | Usmonov X.K. | . | Андижанский Государственный медицинский институт |
№ | Ҳавола номи |
---|---|
1 | 1. Aleksandra Filippova. Non-alcoholic steatohepatitis in patients with obesity: interconnection between body mass, changes of lipid metabolism and concomitant pathology of biliary tract. doi:10.21303/2504-5679.2016.00115. |
2 | 2. Moore, E. S., Daugherity, E. K., Karambizi, D. I., Cummings, B. P., Behling-Kelly, E., Schaefer, D. M. W., … Weiss, R. S. (2019). Sex-specific hepatic lipid and bile acid metabolism alterations in Fancd2-deficient mice following dietary challenge. Journal of Biological Chemistry, jbc.RA118.005729. doi:10.1074/jbc.ra118.005729. |
3 | 3. Tazuma, S., Kanno, K., Sugiyama, A., & Kishikawa, N. (2013). Nutritional factors (nutritional aspects) in biliary disorders: Bile acid and lipid metabolism in gallstone diseases and pancreaticobiliary maljunction. Journal of Gastroenterology and Hepatology, 28, 103–107. doi:10.1111/jgh.12241 |
4 | 4. Tazuma S. Gallstone disease: epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intrahepatic). Best Pract. Res. Clin. Gastroenterol. 2006; 20: 1075–83. |
5 | 5. Hyogo H, Tazuma S, Cohen DE. Cholesterol gallstones. Curr. Opin. Gastroenterol. 2002; 18: 366–71. |
6 | 6. Ogiyama H, Kamada Y, Kiso S et al. Lack of adiponectin promotes formation of cholesterol gallstones in mice. Biochem. Biophys. Res. Commun. 2010; 399: 352–8. |
7 | 7. Tazuma S. Homocysteine and gallstone diseases: is hyperhomocysteinemia a prerequisite for or secondary to gallstone formation? J. Gastroenterol. 2005; 40: 1085–7. |
8 | 8. Tazuma S, Kajiyama G, Mizuno T et al. A combination therapy with simvastatin and ursodeoxycholic acid is more effective for cholesterol gallstone dissolution than is ursodeoxycholic acid monotherapy. J. Clin. Gastroenterol. 1998; 26: 287–91. |
9 | 9. Tazuma S, Yamashita G, Ochi H et al. Effects of cerivastatin sodium, a new HMG-CoA reductase inhibitor, on biliary lipid metabolism in patients with hypercholesterolemia. Clin. Ther. 1998; 20: 477–85. |
10 | 10. Tazuma S, Takizawa I, Kunita T et al. Effects of long-term treatment with low-dose pravastatin on biliary lipid and bile acid composition in patients with nonfamilial hyperlipoproteinemia. Metabolism 1995; 44: 1410–12 |
11 | 11. Tazuma S, Ohya T, Mizuno T et al. Effects of fluvastatin on human biliary lipids. Am. J. Cardiol. 1995; 76: 110A–3A. |
12 | 12. Nishioka T, Hyogo H, Numata Y et al. A nuclear receptor-mediated choleretic action of fibrates is associated with enhanced canalicular membrane fluidity and transporter activity mediating bile acid-independent bile secretion. J. Atheroscler. Thromb. 2005; 12: 211–17. |
13 | 13. Paigen K. A miracle enough: the power of mice. Nat. Med. 1995; 1: 215–20. |
14 | 14. Lammert F, Carey MC, Paigen B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map. Gastroenterology 2001; 120: 221–38. |
15 | 15. Tazuma S, Kajiyama G. Carcinogenesis of malignant lesions of the gall bladder. The impact of chronic inflammation and gallstones. Langenbecks Arch. Surg. 2001; 386: 224–9. |
16 | 16. Komichi D, Tazuma S, Nishioka T, Hyogo H, Une M, Chayama K. Unique inhibition of bile salt-induced apoptosis by lecithins and cytoprotective bile salts in immortalized mouse cholangiocytes. Dig. Dis. Sci. 2003; 48: 2315–22. |
17 | 17. Komichi D, Tazuma S, Nishioka T, Hyogo H, Chayama K. Glycochenodeoxycholate plays a carcinogenic role in immortalized mouse cholangiocytes via oxidative DNA damage. Free Radic. Biol. Med. 2005; 39: 1418–27. |
18 | 18. Komichi D, Tazuma S, Nishioka T, Hyogo H, Chayama K. A nuclear receptor ligand downregulates cytosolic phospholipase A2 expression to reduce bile acid-induced cyclooxygenase 2 activity in cholangiocytes: implications of anticarcinogenic action of farnesoid X receptor agonists. Dig. Dis. Sci. 2005; 50: 514–24. |
19 | 19. Tsuboi K, Tazuma S, Ochi H, Chayama K. Hydrophilic bile salts have a cytoprotective effect against cyclosporine A-induced cholestasis through enhanced canalicular membrane fluidity and transporter activity. Hepatol. Res. 2003; 25: 38–47. |
20 | 20. Tsuboi K, Tazuma S, Nishioka T, Chayama K. Partial characterization of cytoprotective mechanisms of lecithin against bile salt-induced bile duct damage. J. Gastroenterol. 2004; 39: 955–60 |
21 | 21. Aihara N, Tazuma S, Kajiyama G. Hydrophilic bile salts and liposomes inhibit hydrophobic bile salt-induced release of glycoprotein by guinea-pig gall-bladder. J. Gastroenterol. Hepatol. 1995; 10: 42–6. |
22 | 22. Nonaka M, Tazuma S, Hyogo H, Kanno K, Chayama K. Cytoprotective effect of tauroursodeoxycholate on hepatocyte apoptosis induced by peroxisome proliferatoractivated receptor gamma ligand. J. Gastroenterol. Hepatol. 2008; 23 (7 Pt 2): e198–206. |
23 | 23. Tazuma S. Cyclosporin A and cholestasis: its mechanism(s) and clinical relevancy. Hepatol. Res. 2006; 34: 135–6. |
24 | 24. Sagawa H, Tazuma S, Kajiyama G. Protection against hydrophobic bile salt-induced cell membrane damage by liposomes and hydrophilic bile salts. Am. J. Physiol. 1993; 264 (5 Pt 1): G835–9. |
25 | 25. Tazuma S, Holzbach RT. Transport of conjugated bilirubin and other organic anions in bile: relation to biliary lipid structures. Proc. Natl Acad. Sci. U. S. A. 1987; 84: 2052–6. |