491

Abstract. In this paper, it is shown that the solutions of the Toda-type chain with self-consistent source can be found by the inverse scattering method for the discrete Sturm-Liuville operator

  • Ўқишлар сони 467
  • Нашр санаси 01-07-2018
  • Мақола тилиIngliz
  • Саҳифалар сони5
English

Abstract. In this paper, it is shown that the solutions of the Toda-type chain with self-consistent source can be found by the inverse scattering method for the discrete Sturm-Liuville operator

Ўзбек

Annotatsiya. Mazkur ishda sochilish nazariyasining teskari masalasi usuli moslangan manbali Toda zanjiri turidagi tenglamani integrallashga tadbiq etilgan.

Ўзбек

Аннотация. В этой работе метод обратной задачи теории рассеяния применяется к интегрированию уравнения типа цепочки Тоды с самосогласованным источником.

Муаллифнинг исми Лавозими Ташкилот номи
1 Babajanov B.A. UrDU
Ҳавола номи
1 Toda M.: One-dimensional dual transformation. J. Phys. Soc. Japan. 22, 431- 436 (1967)
2 2. Toda M.: Wave propagation in anharmonic lattice. J. Phys. Soc. Japan. 23, 501- 506 (1967)
3 Flaschka H. Toda lattice. I. Phys.Rev. B9, 1924-1925 (1974
4 Khanmamedov Ag. Kh.: The rapidly decreasing solution of the initial-boundary value problem for the Toda lattice. Ukrainskiy mathematiceskiy journal. 57, 1144 - 1152 (2005)
5 Mel‘nikov V. K.: A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane Commun. Math. Phys. 112 639– 52, 1987
6 Mel‘nikov V. K.: Integration method of the Korteweg-de Vries equation with a self-consistent source Phys.Lett. A 133 493–6, 1988
7 Mel‗nikov V. K. Integration of the Korteweg-de Vries equation with a source Inverse Problems 6 233–46, 1990.
8 Urazboev G. U.: Toda lattice with a special self-consistent source. Theoret. and Math. Phys. 154, 305-315 (2008)
9 ys. Rev. E 67 026609-1 26. Case K, Kac M.: A discrete version of the inverse scattering problem. J.Math.Phys. 14, 594-603 (1973)
Кутилмоқда