Ikki marta quvvatlanadigan induksiyon generatori (DFIG) virtual inertsiyani boshqarish va reaktiv quvvatni boshqarish tizimiga qayta tiklanadigan energiya ishlab chiqarish tizimiga issiqlik elektr stantsiyasiga o'xshash inertsiya va quvvat xususiyatlarini beradi va tizimning signal barqarorligi boshqaruv strategiyasining parametrlari kichik quvvatga bevosita ta'sir qiladi. Ushbu maqola birinchi navbatda DFIGga asoslangan amortizatsiyani boshqarish va virtual inertsiyani boshqarishning operatsion xususiyatlari va boshqarish strategiyalarini taqdim etadi,shuningdek boshqaruvga asoslangan DFIG integratsiyalashgan o'zaro bog'langan tizimining kichik signalli modelini o'rnatadi va virtual inersiya va reaktiv quvvatning qiymatlarining ta'sirini o'rganadi. Tizimning kichik signalli barqarorligi,keyin kichik buzilishlarni tahlil qilishda intervalli tebranish rejimining maksimal quvvat nisbati optimallashtirish maqsadi sifatida qabul qilinadi va nazorat parametrlari optimallash o'zgaruvchilari hisoblanadi.
Ikki marta quvvatlanadigan induksiyon generatori (DFIG) virtual inertsiyani boshqarish va reaktiv quvvatni boshqarish tizimiga qayta tiklanadigan energiya ishlab chiqarish tizimiga issiqlik elektr stantsiyasiga o'xshash inertsiya va quvvat xususiyatlarini beradi va tizimning signal barqarorligi boshqaruv strategiyasining parametrlari kichik quvvatga bevosita ta'sir qiladi. Ushbu maqola birinchi navbatda DFIGga asoslangan amortizatsiyani boshqarish va virtual inertsiyani boshqarishning operatsion xususiyatlari va boshqarish strategiyalarini taqdim etadi,shuningdek boshqaruvga asoslangan DFIG integratsiyalashgan o'zaro bog'langan tizimining kichik signalli modelini o'rnatadi va virtual inersiya va reaktiv quvvatning qiymatlarining ta'sirini o'rganadi. Tizimning kichik signalli barqarorligi,keyin kichik buzilishlarni tahlil qilishda intervalli tebranish rejimining maksimal quvvat nisbati optimallashtirish maqsadi sifatida qabul qilinadi va nazorat parametrlari optimallash o'zgaruvchilari hisoblanadi.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Mamatqulov T.C. | tayanch doktorant | TIQXMMI MTU |
2 | Tagiyev H.H. | Uchastka boshlig’i | UZBEKGIDROENERGIYA AJ,’’Gidromaxsusqurilish’’AJ |
№ | Ҳавола номи |
---|---|
1 | 1. Tang, M., Li, Z., Li, G., Qie Z. & Yu, Y. “Power oscillation characteristics of large power systems under random disturbances. In: “2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, pp. 2866–2870 (2021). |
2 | 2. Wu, X., Dai, J., Tang, Y. & Xue, F. Adaptive under-frequency load shedding scheme for power systems with high wind power penetration considering operating regions. IET Gener. Transm. Distrib. 16, 4400–4416 (2022). |
3 | 2. Liu,R.etal.AnimprovedvirtualinertiacontrolstrategyforlowvoltageACmicrogridswithhybridenergystoragesystems. Enegies 15, 442. https://doi.org/10.3390/en15020442 (2022). |
4 | 3. Tang,W.etal.ModelingofDFIG-basedwindturbineforpowersystemtransientresponseanalysisinrotorspeedcontroltimescale. IEEE Trans. Power Syst. 33(6), 6795–6805 (2018). |
5 | 4. Suvorov,A.,Askarov,A.,Kievets,A.&Rudnik,V.Acomprehensiveassessmentofthestate-of-the-artvirtualsynchronousgenera- tor models. Electr. Power Syst. Res. 209, 108054 (2022). |
6 | 5. Liu. W., Li. W., Wang. P., Li. D., Li. Z. & Xu, G. Transient Process Analysis of Multi-Physical Parameters of Turbine Generator During Out of Phase Synchronization Fault. IEEE Trans. Energy Convers. 37(3), 2058-2068(2022). |
7 | 6. Ma,J.etal.ResearchontheimpactofDFIGvirtualinertiacontrolonpowersystemsmall-signalstabilityconsideringthephase- locked loop. IEEE Trans. Power Syst. 32(3), 2094–2105 (2017). |