30

Biz ikki o‘lchamli panjarada Hvμ-  bir zarrachali diskret Schrödinger operatorini o‘rganamiz. Hvμ  operatorning muhim spektrdan yuqorida xos qiymatlari mavjudligi yoki mavjud emasligini va sonini aniqlaymiz. Bundan tashqari, xos qiymat funksiyasining xossalarini  va yetarlicha kichik, musbat μ larda xos qiymatning asimptotikasini o‘rganamiz

  • Ўқишлар сони 0
  • Нашр санаси 12-08-2024
  • Мақола тилиO'zbek
  • Саҳифалар сони131-139
Ўзбек

Biz ikki o‘lchamli panjarada Hvμ-  bir zarrachali diskret Schrödinger operatorini o‘rganamiz. Hvμ  operatorning muhim spektrdan yuqorida xos qiymatlari mavjudligi yoki mavjud emasligini va sonini aniqlaymiz. Bundan tashqari, xos qiymat funksiyasining xossalarini  va yetarlicha kichik, musbat μ larda xos qiymatning asimptotikasini o‘rganamiz

Русский

Мы исследуем одночастичный дискретный оператор ШредингераHvμна одномерной решетке T2. Установим существование или несуществование, а также конечность собственных значений оператора Hvμ лежащих ниже существенного спектра. Кроме того, мы изучаем свойства собственных значений в зависимости от μ, в частности, находим асимптотику собственных значений при достаточно малом и положительном μ

English

We consider the family Hvμ of discrete Schrödinger-type operator in two-dimensional lattice T2. We establish the existence or non-existence and also the finiteness of eigenvalues of Hvμ lying above the essential spectrum. Moreover, we study the properties of eigenvalues as a function of μ, in particular, we find the asymptotics of eigenvalues as sufficiently small and positive μ.

Муаллифнинг исми Лавозими Ташкилот номи
1 Almuratov F.M. dotsent Miliy unversiteti Jizzax filyali
2 Pardabaev M.. dotsent O'zbekiston Finlandiya pedagogika instituti
3 Bobonazarova A.. Magistr Milliy unversitet Jizzax filyali
Ҳавола номи
1 [1] Sh. Kholmatov, S. Lakaev, F. Almuratov: Bound states of Schrodinger-type operators on one and two dimensiona¨l lattices.J. Math. Anal. Appl. 503 (2021), 125280.
2 [2] M. Klaus: On the bound states of Schrodinger operators in one dimension¨ .Ann. Phys. 108 (1977), 288–300.
3 [3] M. Klaus, B. Simon: Coupling constant thresholds in nonrelativistic Quantum Mechanics. I. Short-range twobody case. Ann. Phys. 130 (1980), 251–281.
4 [4] S.N. Lakaev, A.M. Khalkhuzhaev, Sh.S. Lakaev: Asymptotic behavior of an eigenvalue of the two-particle discrete Schrodinger operator¨.Theoret. and Math. Phys. 171 (2012), 800–811.
5 [5] A. Khalkhuzhaev, Sh.Kholmatov, M.Pardabaev: Expansion of eigenvalues of the perturbed discrete bilaplacian. Journals Monatshefte fur Mathematik, (2022)
6 [6] S.N. Lakaev, Sh.Yu. Kholmatov: Asymptotics of the eigenvalues of a discrete Schrodinger operator with zero¨range potential. Izvestiya Math. 76 (2012), 946–966.
7 [7] S.N. Lakaev, Sh.Yu. Kholmatov: Asymptotics of eigenvalues of two-particle Schrodinger operators on lattice¨s with zero-range interaction.J. Phys. A: Math. Theor. 44 (2011)
8 [8] Shokhrukh Yu. Kholmatov, Saidakhmat N. Lakaev, Firdavsjon M. Almuratov: On the spectrum of Schrödinger-type operators on two dimensional lattices, Journal of Mathematical Analysis and Applications, 514(2) (2022), 126363. https://doi.org/10.1016/j.jmaa.2022.126363
9 [9] Lakaev, S.N., Boltaev, A.T. & Almuratov, F.M. On The Discrete Spectra of Schrödinger-Type Operators on one Dimensional Lattices. Lobachevskii J Math 43, 770–783 (2022).https://doi.org/10.1134/S199508022206018X
10 [10] M. Reed, B. Simon: Modern Methods of Mathematical Physics. IV: Analysis of Operators. Academic Press, New York. (1978).
11 [11] B. Simon: The bound state of weakly coupled Schrodinger operators in one and two dimension¨s.Ann. Phys. 97 (1976), 279–288
Кутилмоқда