All in all, there are about 60 million vanadium deposits in the world, 90% of which are localized in the territory of the five countries: Russia, South Africa, Venezuela, the United States and China. Sulfuric acid production is the main consumer of vanadium in the form of vanadium catalysts (V2 O5 pentoxide). The demand for vanadium and its compounds keeps growing every year, as a result of the increased interest in processing of secondary vanadium-containing raw materials. One of the main sources of vanadium are the spent vanadium catalysts – SVC. About 100 thousand tons of spent vanadium catalysts are formed throughout the country, which are considered to be potentially hazardous for the environment and local population. Disposal of spent vanadium catalysts used for oxidizing of sulfur dioxide represents a serious environmental threat due to the lack of effective technologies for their processing. This work is devoted to a method for processing of spent vanadium catalysts to obtain a stuff that will be suitable for modifying of steels. The pyrometallurgical method of processing of technogenic raw materials by oxidative firing has been investigated and the parameters of firing – optimal firing time and temperature for extracting vanadium from the material – have been identified.
Umuman olganda, dunyoda 60 millionga yaqin vanadiy konlari mavjud bo‘lib, ularning 90 foizi beshta davlat hududida joylashgan: Rossiya, Janubiy Afrika, Venesuela, AQSh va Xitoy. Sulfat kislota ishlab chiqarish vanadiy katalizatorlari (V2 O5 pentoksid) shaklida vanadiyning asosiy iste’molchisi hisoblanadi. Ikkilamchi vanadiy saqlovchi xomashyoni qayta ishlashga qiziqish ortib borayotgani bois vanadiy va uning birikmalariga boʻlgan talab yil sayin ko‘paymoqda. Vanadiyning asosiy manbalaridan biri sarflangan vanadiy katalizatorlari – IVK hisoblanadi. Ishlatilgan vanadiy katalizatorlari mamlakat bo‘ylab taxminan 100 000 ming tonna shakllanadi. Bu yerda to‘plangan chiqindilar atrof-muhit va mahalliy aholi uchun eng xavfli moddalardan biri. Oltingugurt dioksidini oksidlash uchun sarflangan vanadiy katalizatorlarini utilizatsiya qilish ularni qayta ishlashning mavjud texnologiyalari yo‘qligi sababli jiddiy ekologik muammodir. Ushbu ish po‘latlarni legirlash uchun mos mahsulotni olish maqsadida ishlatilgan vanadiy katalizatorlarini qayta ishlash usuliga bag‘ishlangan. Texnogen xomashyoni oksidlovchi kuydirish usuli bilan qayta ishlashning pirometallurgiya usuli ko‘rib chiqiladi, kuydirish parametrlari topiladi, ya’ni materialdan vanadiyni ajratib olish uchun optimal kuydirishning vaqti va harorati aniqlanadi.
Всего в мире ванадиевых залежей насчитывается порядка 60 млн тонн, из которых 90% локализируются на территории пяти государств: России, ЮАР, Венесуэлы, США и Китая. Производство серной кислоты является главным потребителем ванадия в виде ванадиевых катализаторов (пентаоксид V2 O5 ). Спрос на ванадий и его соединения растет по миру ежегодно, как следствие, повышается интерес к переработке вторичного ванадийсодержащего сырья. Одним из основных источников ванадия являются отработанные ванадиевые катализаторы – ОВК. По всей стране образуются около 100000 тыс. тонн отработанных ванадиевых катализаторов, являющихся потенциально опасными веществами как для окружающей среды, так и для местного населения, там, где скапливаются отходы. Утилизация отработанных ванадиевых катализаторов окисления диоксида серы представляет серьезную экологическую проблему в связи с отсутствием действующих технологий по их переработке. Данная работа посвящена способу переработки отработанных ванадиевых катализаторов с получением продукта, приемлемого для модификации сталей. Рассмотрен пирометаллургический способ переработки техногенного сырья методом окислительного обжига, выявлены параметры обжига, т.е. оптимальное время и температура для извлечения ванадия из материала.
All in all, there are about 60 million vanadium deposits in the world, 90% of which are localized in the territory of the five countries: Russia, South Africa, Venezuela, the United States and China. Sulfuric acid production is the main consumer of vanadium in the form of vanadium catalysts (V2 O5 pentoxide). The demand for vanadium and its compounds keeps growing every year, as a result of the increased interest in processing of secondary vanadium-containing raw materials. One of the main sources of vanadium are the spent vanadium catalysts – SVC. About 100 thousand tons of spent vanadium catalysts are formed throughout the country, which are considered to be potentially hazardous for the environment and local population. Disposal of spent vanadium catalysts used for oxidizing of sulfur dioxide represents a serious environmental threat due to the lack of effective technologies for their processing. This work is devoted to a method for processing of spent vanadium catalysts to obtain a stuff that will be suitable for modifying of steels. The pyrometallurgical method of processing of technogenic raw materials by oxidative firing has been investigated and the parameters of firing – optimal firing time and temperature for extracting vanadium from the material – have been identified.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Turobov S.N. | “Metallurgiya” kafedrasi assistenti | Navoiy davlat konchilik instituti |
2 | Xasanov A.S. | texnika fanlari doktori, professor | OKMK bosh muhandisining ilm-fan bo‘yicha o‘rinbosari |
№ | Название ссылки |
---|---|
1 | Mukhlenov I.P., Dobkina Ye.I., Deryujkina V.I. et al. Technology of catalysts. Leningrad, Chemistry, 1979, 325 p. |
2 | Vinarov I.V. et al. Complex use of raw materials, 1988, no. 2, pp. 17-19. |
3 | Turobov Sh. N., Hasanov A.S., Shodiev A.N. Research into technology of extraction of vanadium using sulfuric acid production waste. Universum: Technical science. 2020, no. 11(80), pp. 82-85. |
4 | Masidiqov E.M., Karshiboev S. Possibilities of increasing the efficiency of the technology of hydrometallurgical processing of lead concentrates. Academic research in educational sciences, 2021, no. 2 (3). |
5 | Xasanov A.S., Karshiboev Sh.B. Perspektivy razvitiya texnologii polucheniya germaniya iz texnogennyx otxodov. [Prospects for development of technology for producing germanium from industrial waste]. Universum: Technical science, 2021, no. 8(89). |
6 | Mirzanova Z. A., Munosibov Sh. M., Raximjonov Z. B., Karimova Sh. K., Tashaliev F. U., Karshiboev Sh. B., Texnologiya pererabotki texnogennix otxodov soderjashie svetnie metalli. [Technology for processing industrial waste containing non-ferrous metals]. Universum: Technical science, no. 6-1 (87), 2021, pp. 59-65. |
7 | Alikulov Sh.Sh., Karshiboev Sh.B., Jalilov G.B. Izuchenie osnovy sorbsionnoy texnologii pererabotki uranovyx rastvorov. [Study of the basics of sorption technology for processing uranium solutions]. Universum: Technical science, 2021, no. 3(84). |
8 | Voxidov B.R. Issledovaniye vozmojnosti izvlecheniya oksida vanadiya iz texnogennix otxodov. [Investigation of the possibility of extracting vanadium oxide from industrial waste]. Eurasia Scievce, 2017, pp. 93-95. |
9 | Lozano L.J. Recovery by solvent extraction of vanadium from spent catalysts leaching solutions using. Primene 81 R. Rev.Met. CENIM, 2001, 37, no. 5, pp. 582-590. |
10 | Kravchenko K.N. Metod regenerasii otrabotannogo vanadiyevogo katalizatora. [Waste vanadium catalyst regeneration method]. Kemerovo, 2018, p. 10. |
11 | Juang R.S., Lo R.H. Stoichimetery of vanadium (IV) extraction from sulphate solutions with bis(2-ethylhexyl)phosphoric acid dissolved in kerosene. J. Chem. Eng. Jpn. 1993, 26:219. |
12 | Marafi M, Stanislaus A. Spent hydrprocessing catalyst management: A review Part II Advances in metal recovery and safe disposal methods. Resour Conserv Recycl, 2008, 53:1–26. |
13 | Noori M., Rashchi F., Babakhani A., Vahidi E. (2014) Selective recovery and separation of nickel and vanadium in sulfate media using mixtures of D2EHPA and Cyanex, 272. Sep Purif Technol, 2014, 136:265-273. |
14 | Park K.H., Mohapatra D., Reddy B.R. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. J Hazard Mater, 2006, 138:311– 316. |
15 | Rapaport D. Are spent hydrocracking catalysts listed hazardous wastes? Hydrocarb Process, 2000, 79:49-53. |
16 | Sahu K.K., Agrawal A., Mishra D. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine. J Environ Manage, 2013, 125:68-73. |
17 | Saily A. Studies on liquid-liquid extraction of molybdenum, tugsten and vanadium using alkylphosphine extractants. Indian Institute of Technology, 1997, Roorkee. |