187

This article studies feasibilities of making an implant-film for treatment of burn wound, based on silver nanoparticles (AgNPs) stabilized by sodiumcarboxymethylcellulose (Na-CMC) with degrees of substitution (DS) 0.65-0.90 and polymerization (DP) 200-600 synthesized using a photochemical method. The structural, physical and chemical, and physicalmechanical, burn wound healing properties as well as antimicrobial effects of implant-films containing the Na-CMC and AgNPs have been investigated. The shape, quantity, and size of the AgNPs embedded into the Na-CMC films were determined by UV-Vis spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). It was found that the increase of silver nitrate concentration in solution of Na-CMC followed by photoirradiation leads to changes of AgNPs size and shape. It was found out that Na-CMC films containing AgNPs in the size ranging from 5 to 35 nm had enhanced the microbicide effects and burn wound healing properties within 14 days.

  • Количество прочтений0
  • Дата публикации24-02-2022
  • Язык статьиIngliz
  • Страницы56-68
Ўзбек

Мазкур мақолада алмашиниш даражаси (АД) 0,65-0,85 ва полимерланиш даражаси (ПД) 200-600 бўлган натрий-карбоксиметилцеллюлоза (Na-КМЦ) эритмасида барқарор кумуш нанозарралари (АgНЗ) фотокимёвий қайтарилиш усулида синтез қилинган. Таркибида АgНЗ ва Na-КМЦ тутган плёнкаларнинг физик-кимёвий, физик-механик ва куйган яраларни даволовчи хоссалари ҳамда бактерицид фаоллиги ўрганилган. Na-КМЦ плёнкаларида шаклланган АgНЗнинг ўлчами, шакли ва миқдори атом кучланишли микроскопия (АКМ), УБ-спектроскопия, динамик ёруғлик тарқалиши (DLS) ва трансмиссион электрон микроскопия (TЭМ) усуллари орқали аниқланган. Na-КМЦ ва у асосида олинган имплант-плёнкаларда кумуш нитрат тузи концентрацияси ортиши билан фотокимёвий қайтариш натижасида шаклланаётган АgНЗ ўлчам ва шаклларининг ўзгариши аниқланди. Ўлчамлари 5–35 нм бўлган АgНЗ тутган Na-КМЦ плёнкалар юқори бактерицид фаоллик намоён қилганлиги ва 14 кун давомида куйган яраларни даволаш хусусиятига эга эканлиги аниқланди.

Русский

В данной статье стабильные наночастицы серебра (НЧAg) были синтезированы фотохимическим методом в растворе натрий-карбоксиметилцеллюлозы (Na-КМЦ) со степенью замещения (СЗ) 0,65-0,85 и степенью полимеризации (СП) 200-600. Изучены структура, физико-химические, физико-механические и противоожоговые свойства, а также бактерицидная активность пленок Na-КМЦ, содержащих НЧAg. Методами атомно-силовой микроскопии (АСМ), УФ-спектроскопии, динамического рассеяния света (DLS) и просвечивающей электронной микроскопии (ПЭМ) определены форма и размеры НЧAg, присутствующие в пленках Na-КМЦ. Установлено, что с увеличением концентрации нитрата серебра в растворах Na-КМЦ в процессе фотооблучения происходит изменение размера и формы НЧAg. Экспериментально доказано, что пленки Na-KMЦ, содержащие НЧAg размером от 5–35 нм, обладают высокой бактерицидной активностью и ранозаживляющими свойствами при ожоговых ранах в течение 14 суток.

English

This article studies feasibilities of making an implant-film for treatment of burn wound, based on silver nanoparticles (AgNPs) stabilized by sodiumcarboxymethylcellulose (Na-CMC) with degrees of substitution (DS) 0.65-0.90 and polymerization (DP) 200-600 synthesized using a photochemical method. The structural, physical and chemical, and physicalmechanical, burn wound healing properties as well as antimicrobial effects of implant-films containing the Na-CMC and AgNPs have been investigated. The shape, quantity, and size of the AgNPs embedded into the Na-CMC films were determined by UV-Vis spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). It was found that the increase of silver nitrate concentration in solution of Na-CMC followed by photoirradiation leads to changes of AgNPs size and shape. It was found out that Na-CMC films containing AgNPs in the size ranging from 5 to 35 nm had enhanced the microbicide effects and burn wound healing properties within 14 days.

Название ссылки
1 Zhubanov B.A., Batyrbekov E.O., Iskhakov R.M. Polymer Materials with Therapeutic Effect. Kompleks, Almaty, 2000, 220 p.
2 Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramirez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, no. 16, pp. 2346-2353.
3 Shcherbakov A.B. and other. Preparations of silver in the past, present and future. Pharmaceutical journal, 2006, no. 5, pp. 45-57.
4 Soni I., Salopek-Bondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, no. 275 (1), pp.177-182.
5 Xu Y., Li S., Yue X., Lu W. Review of Silver Nanoparticles (AgNPs)-Cellulose Antibacterial Composites. BioResources, 2017, no. 13 (1), pp. 2150-2170.
6 Hebeish A., Hashem M., El-Hady M.M.A., Sharaf S. Development of CMC hydrogels loaded with silver nanoparticles for medical applications. Carbohydr Polym., 2013, no. 92 (1), pp. 407-413.
7 Alshehri S.M., Aldalbahi A., Al-hajji Abdullah Baker, Chaudhary A.A., Panhuis M., Alhokbany N., Ahamad T. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym., 2016, no. 138, pp. 229-236.
8 Krutagn P., Bhavesh B., Tulsi M., Tejal S., Atindra Sh., Suhagia B.N. Role of stabilizing agents in the formation of stable silver nanoparticles in aqueous solution: Characterization and stability study. Journal of Dispersion Science and Technology, 2017, no. 38 (5), pp. 626-631.
9 Pedroza-Toscano M.A., López-Cuenca S., Rabelero-Velasco M., Moreno-Medrano E.D., Mendizabal-Ruiz A.P., Salazar-Peña R. Silver Nanoparticles Obtained by Semicontinuous Chemical Reduction Using Carboxymethyl Cellulose as a Stabilizing Agent and Its Antibacterial Capacity. Journal of Nanomaterials, 2017, pp. 1-7.
10 Basuny M., Ali I.O., El-Gawad A.A., Bakr M.F., Salama T.M. A fast green synthesis of Ag nanoparticles in carboxymethylcellulose through UV irradiation technique for antibacterial applications. Journal of Sol-Gel Science and Technology, 2015, no. 75 (3), pp. 530-540.
11 Raho R., Nguyen N.Y., Zhang N., Jiang W., Sannino A., Liu H., Paladini F. Photo-assisted green synthesis of silver doped silk fibroin carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. Materials Science and Engineering, 2020, no. 107, pp. 110219-110232.
12 Martínez-Rodríguez M.A., Madla-Cruz E., Urrutia-Baca V.H., De la Garza-Ramos M.A., GonzálezGonzález V.A., Garza-Navarro M.A. Influence of Polysaccharides’ Molecular Structure on the Antibacterial Activity and Cytotoxicity of Green Synthesized Composites Based on Silver Nanoparticles and Carboxymethyl-Cellulose. Nanomaterials, 2020, no. 10 (6), pp. 1164-1182.
13 Sarymsakov А.А., Kholturaev B., Yunusov Kh.E, Oksengendler B.L., Nurgaliev I.N., Letfullin R.R. The Role of Electron Structure of Polymers at Their Biodegradation in Living Organism. Drug Des Dev Deliv, 2020, no. 1, pp. 110-118.
14 Yuldoshov Sh.A., Sarymsakov A.A., Goyipov I.Sh. Purified Carboxymethylсellulose for the Pharmaceutical Industry. International J. of Advanced Science and Technology, 2020, no. 29 (9s), pp. 4733-4737.
15 Mirzoeva A.E. Methods for General Bacteriology. Moscow, 2002, 62 p.
16 Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 2007, no. 3 (2), pp. 168-171.
17 Carlos G.L., Ralph H.C., Peter G., Joao T.C. Viscosity and scaling of semiflexible polyelectrolyte NaCMC in aqueous salt solutions. Macromolecules, 2016, no. 50 (1), pp. 332-338.
18 Garza-Navarro M.A., Aguirre-Rosales J.A., Llanas-Vázquez E.E., Moreno-Cortez I.E., Torres-Castro A., González-González V. Totally Ecofriendly Synthesis of Silver Nanoparticles from Aqueous Dissolutions of Polysaccharides. International Journal of Polymer Science, 2013, pp. 1-8.
19 Bardania H., Mahmoudi R., Bagheri H. et al. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci Rep., 2020, no. 10, pp. 6129-6143.
20 Lilia C.C., Flávia R.O., Silva L.G. A simple method to synthesize silver nanoparticles by photoreduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, no. 305 (1), pp. 54-57.
21 Loginov A.V., Gorbunova V.V., Boysova T.B. Methods for preparation of metal colloids. Journal general chemistry, 1997, no. 67 (2), pp. 189-200.
22 Yunusov K.E., Sarymsakov A.A., Atakhanov A.A., Ashurov N.Sh., Rashidova S.Sh. Physicochemical studies of cotton cellulose and its derivatives containing silver nanoparticles. Chemistry of Natural Compounds, 2011, no. 47, pp. 370-373.
23 Mott N.F., Gurney R.W. Electronic processes in ionic crystals. New York, Oxford University Press, 1940, 172 p.
24 Mittelman A.M., Fortner J.D., Pennell K.D. Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environmental Science: Nano, 2015, no. 2 (6), pp. 683-691.
25 Khagvajava L., Yaşab I., Çelikc E., Koizhaiganovaa M., Saria Ö. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Digest Journal of Nanomaterials and Biostructures, 2011, no. 6 (1), pp. 149-154.
26 Yunusov Kh.E., Rashidova S.Sh., Sarymsakov A.A. Problems and prospects application of silver nanoparticles in medical practice. Nanoscience and nanotechnology an Indian journal (NSNTAIJ), 2016, no. 10 (2), pp. 83-97.
27 Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Springer, Berlin, 1995, 532 p.
28 Yunusov Kh.E., Mullajonova S.V., Sarymsakov А.А., Jalilov J.Z., Turakulov F.M. et al. Antibacterial effect of cotton fabric treated with silver nanoparticles of different sizes and shapes. Nanomater Nanotechnol Nanomed, 2019, no. 5 (2), pp. 016-023.
29 Sang H.L., Bong-Hyun J. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Mol Sci., 2019, no. 20 (4), p. 865.
30 Yunusov K.E., Sarymsakov A.A., Rashidova S.Sh. Structure and properties of biodegradable carboxymethyl cellulose films containing silver nanoparticles. Polymer Science: Series A, 2014, no. 56, pp. 276-281.
31 Stepanov A.L. Optical properties metallic nanoparticle, synthesized in polymer by method ion implantation (review). Journal technical physics, 2004, no. 74 (2), pp. 1-12.
32 Lopatina LI, Sergeev VG. Influence of molecular weight and structure polyacrilic acids on formation «dark blue silver». Vestn. Mosk. Univ. – Bulletin of the Moscow University, Ser. 2: Khim., 2010, no. 51, pp. 398-401.
33 Sergeev B.M., Kiryuhin M.V., Prusov A.N., Sergeyev V.G. Preparation of silver nanoparticles in aqueous solution of polyacrylic acid. Bulletin of Moscow State University, series of Chemistry- I, 1999, no. 40 (2), pp. 129-133.
34 Zhao Y., Wang Y., Ran F., Cui Y., Liu C., Zhao Q., Wang S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Scientific Reports, 2017, no. 7, p. 11.
35 Kiryukhin M.V., Sergeev B.M., Prusov A.N., Sergeyev V.G. Photochemical reduction of silver cations in a polyelectrolyte matrix. Polym. Sci., Ser. B, 2000, no. 6 (42), pp. 1069-1073.
В ожидании