Ўтмиш ва келажакдаги иқлимий фарқларнинг дарё ҳавзалари оқим динамикасига таъсирини баҳолаш келажакда дарё ҳавзалари учун барқарор қишлоқ хўжалиги ҳосилдорлигини таъминлаш, шунингдек, иқлим ўзгаришининг экология ва атроф-муҳитга таъсирини камайтиришда муҳим аҳамият касб этади. Ушбу ҳолат бир неча соҳаларда: технология, инфратузилма, сиёсат, иқтисодиёт, экология ва атроф-муҳитни муҳофаза қилиш бўйича шошилинч ва келишилган ҳаракатларни талаб этади. Мақолада дельта ёндашув усули ёрдамида 2030, 2050 ва 2070 йилларда глобал циркуляцияси модели (GCM)ни мувофиқлаштириш сценарийлари, RCP4.5 ва RCP8.5 асосида ёғингарчилик интенсивлиги ўзгаришларнинг Чирчиқ дарёси оқими динамикасига таъсири баҳоланди. Тадқиқот натижаларида Чирчиқ ҳавзасида яқин ва узоқ келажак учун оқим динамикаси ўзгаришларига аниқ далиллар келтирилган. Мазкур тадқиқот иқлим ўзгаришига жавобан Чирчиқ ҳавзасида барқарор қишлоқ хўжалиги ҳосилдорлиги ва озиқ-овқат хавфсизлигини таъминлаш, экология ва атроф-муҳитни муҳофаза қилиш, жамиятнинг ижтимоий даражасини яхшилашда, сув ресурсларини оператив бошқариш механизмини ишлаб чиқиш ва иқтисодий барқарорликни таъминлашга эришишда фойдали маълумот бўлиб хизмат қилади.
Ўтмиш ва келажакдаги иқлимий фарқларнинг дарё ҳавзалари оқим динамикасига таъсирини баҳолаш келажакда дарё ҳавзалари учун барқарор қишлоқ хўжалиги ҳосилдорлигини таъминлаш, шунингдек, иқлим ўзгаришининг экология ва атроф-муҳитга таъсирини камайтиришда муҳим аҳамият касб этади. Ушбу ҳолат бир неча соҳаларда: технология, инфратузилма, сиёсат, иқтисодиёт, экология ва атроф-муҳитни муҳофаза қилиш бўйича шошилинч ва келишилган ҳаракатларни талаб этади. Мақолада дельта ёндашув усули ёрдамида 2030, 2050 ва 2070 йилларда глобал циркуляцияси модели (GCM)ни мувофиқлаштириш сценарийлари, RCP4.5 ва RCP8.5 асосида ёғингарчилик интенсивлиги ўзгаришларнинг Чирчиқ дарёси оқими динамикасига таъсири баҳоланди. Тадқиқот натижаларида Чирчиқ ҳавзасида яқин ва узоқ келажак учун оқим динамикаси ўзгаришларига аниқ далиллар келтирилган. Мазкур тадқиқот иқлим ўзгаришига жавобан Чирчиқ ҳавзасида барқарор қишлоқ хўжалиги ҳосилдорлиги ва озиқ-овқат хавфсизлигини таъминлаш, экология ва атроф-муҳитни муҳофаза қилиш, жамиятнинг ижтимоий даражасини яхшилашда, сув ресурсларини оператив бошқариш механизмини ишлаб чиқиш ва иқтисодий барқарорликни таъминлашга эришишда фойдали маълумот бўлиб хизмат қилади.
Оценка влияния прошлых и будущих климатических различий на динамику стока в речных бассейнах важна для обеспечения устойчивой продуктивности сельского хозяйства в будущем, а также для снижения воздействия изменения климата на окружающую среду. Эта ситуация требует срочных и согласованных действий в нескольких областях: технологии, инфраструктура, политика, экономика, экология и окружающая среда. В исследовании оценивается влияние изменения интенсивности осадков на динамику стока реки Чирчик на основе модели глобальной циркуляции (GCM) для 2030, 2050 и 2070 годов с использованием метода дельта-подхода по сценариям RCP 4.5 и RCP 8.5. Результаты исследования убедительно показывают изменения в динамике стока в бассейне река Чирчик в краткосрочной и долгосрочной перспективе. Данное исследование будет полезным в целях обеспечения устойчивой продуктивности сельского хозяйства и продовольственной безопасности в бассейне реки Чирчик в ответ на изменение климата, а также разработки механизма оперативного управления водными ресурсами для защиты окружающей среды, улучшения социального положения общества и достижения экономической стабильности в регионе.
Assessing the impact of the past and future climatic differences on the runoff dynamics in river basins is important in view to ensure sustainable agricultural output in the future, as well as to reduce the impact of climate change on the environment. This situation requires urgent and concerted action in several areas: technology, infrastructure, policy, economics, ecology and environment. The study assesses the impact of changing precipitation intensity on the flow dynamics of the Chirchik River based on the Global Circulation Model (GCM) for 2030, 2050 and 2070 using the delta approach method under RCP4.5 and RCP8.5 scenarios. The study findings convincingly show changes in flow dynamics in the Chirchik River basin in the short and long term perspectives. This study will be useful information to ensure sustainable agricultural productivity and food security in the Chirchik basin in response to climate change, as well as to develop a mechanism for operational water management to protect the environment, improve the social status of society and achieve economic sustainability in the region.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Gafforov H.S. | texnika fanlari falsafa doktori (PhD), dotsent | «Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti» milliy tadqiqot universiteti, «Gidromeliorativ tizimlardan foydalanish» kafedrasi |
2 | Ungalov A.N. | «Mis sanoati klasterlari va iqtisodiyotni innovatsion rivojlantirish» boshqarmasi bosh mutaxassisi | O‘zbekiston Respublikasi Innovatsion rivojlanish vazirligi |
3 | Bao A.. | PhD, professor, Shinjon masofadan zondlash markazi rahbari | Xitoy Fanlar Akademiyasi, Shinjon ekologiya va geografiya instituti |
4 | Olimjonov N.O. | magistrant | «Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti» milliy tadqiqot universiteti, «Gidromeliorativ tizimlardan foydalanish» kafedrasi |
№ | Название ссылки |
---|---|
1 | Gafforov Kh.Sh., Bao A., Rakhimov Sh., Liu T., Abdullaev F., Jiang L., Durdiev Kh., Duulatov E., Rakhimova M., Mukanov Y. The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik-Akhangaran Basin, Uzbekistan. Sustainability, 2020, no. 12, 3369, pp. 2-21. DOI: 10.3390/ su12083369/. |
2 | Luo M., Liu T., Frankl A., Duan Y., Meng F., Bao A., De Maeyer P. Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: how climate change reacts in Xinjiang, China. International Journal of Climatology, 2018, no. 38 (5), pp. 2538-2553. DOI: 10.1002/ joc.5425/. |
3 | Jiang C., Zhang H., Wang X., Feng Y., Labzovskii L. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation. Ecological Engineering, 2019, no. 127, pp. 135-150. DOI: 10.1016/j.ecoleng.2018.11.018/. |
4 | Luo M., Liu, T., Meng, F., Duan, Y., Bao, A., Frankl, A., & De Maeyer, P. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. International Journal of Climatology, 2019, no. 39 (3), pp. 1571-1588. DOI: 10.1002/joc.5901/. |
5 | Nazemi A., Wheater H.S. On inclusion of water resource management in Earth system models. Part 2. Representation of water supply and allocation and opportunities for improved modeling. Hydrology & Earth System Sciences, 2015, no. 19, pp. 33-61. DOI: 10.5194/hess-19-33-2015/. |
6 | Ganasri B., Ramesh H. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 2016, no. 7 (6), pp. 953-961. DOI: 10.1016/j. gsf.2015.10.007/. |
7 | Wang X., Pedram Sh., Liu T., Gao R., Li F., Luo Y. Estimated grass grazing removal rate in a semiarid Eurasian steppe watershed as influenced by climate. Water, 2016. no. 8 (8), p. 339. DOI: 10.3390/ w8080339/. |
8 | Shahgedanova M., Afzal M., Severskiy I., Usmanova Z., Saidaliyeva Z., Kapitsa V., Dolgikh S. Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments. Journal of hydrology, 2018, no. 564, pp. 1133-1152. DOI: 10.1016/j.jhydrol.2018.08.001/. |
9 | Duulatov E., Chen X., Amanambu A.C., Ochege F.U., Orozbaev R., Issanova G., Omurakunova G. Projected rainfall erosivity over Central Asia based on CMIP5 climate models. Water, 2019, no. 11 (5), p. 897. |
10 | Usmanov S., Mitani Y., Kusuda T. An Integrated Hydrological Model for Water Balance Estimation in the Chirchik River Basin, Northern Uzbekistan. Computational Water, Energy, and Environmental Engineering, 2016, no. 5 (03), p. 87. DOI: 10.4236/cweee.2016.53009/. |
11 | Kumar M.S. Application of SWAT model to the Nethravathi River Basin. A post graduate thesis. National Institute of Technology Karnataka, Surathkal, India, 2011. |
12 | Mondal A., Khare D., Kundu S. Change in rainfall erosivity in the past and future due to climate change in the central part of India. International Soil and Water Conservation Research, 2016, no. 4 (3), pp. 186-194. DOI: 10.1016/j.iswcr.2016.08.004/. |
13 | Chen L., Frauenfeld O.W. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. Journal of Climate, 2014, no. 27 (11), pp. 3920-3937. DOI: 10.1175/JCLI-D-13-00465.1/. |
14 | Carlsson B., Graham L.P., Andréasson J., Rosberg J. Exploring the range of uncertainty in climate change impacts on runoff and hydropower for the Luleälven River. Paper presented at the Proceedings of the 15th International Northern Research Basins Symposium and Workshop, Luleå to Kvikkjokk, Sweden, 2005, August 29 – Sept. 2. |
15 | Rakhimova M., Liu T., Bissenbayeva S., Mukanov Y., Gafforov Kh.Sh., Bekpergenova Zh., Gulakhmadov A. Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan. Sustainability, 2020, no. 12 (12), p. 4968. DOI: 10.3390/su12124968/. |
16 | Mailhot A., Duchesne S., Caya D., Talbot G. Assessment of future change in intensity – duration – frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM). Journal of hydrology, 2007, no. 347 (1-2), pp. 197-210. DOI: 10.1016/j.jhydrol.2007.09.019/. |
17 | Hay L.E., Wilby R.L., Leavesley G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States 1. JAWRA. Journal of the American Water Resources Association, 2000, no. 36 (2), pp. 387-397. DOI: 10.1111/j.1752-1688.2000.tb04276.x/. |
18 | Zhang F.-Yu., Li L.-H., Ahmad S., Li X.-M. Using path analysis to identify the influence of climatic factors on spring peak flow dominated by snowmelt in an alpine watershed. Journal of Mountain Science, 2014, no. 11 (4), pp. 990-1000. |
19 | Fu G., Crosbie R.S., Barron O., Charles S.P., Dawes W., Shi X., Van Niel T., Li Ch. Attributing variations of temporal and spatial groundwater recharge: A statistical analysis of climatic and non-climatic factors. Journal of Hydrology, 2019, no. 568, pp. 816-834. |
20 | Gapparov F., Qodirov S., Gaffarova M., Mansuro S. Change of hydrological regime of foothill small rivers of Uzbekistan. ICISCT – International Conference on Information Science and Communications Technologies, 2019. IEEE. DOI: 10.1109/ICISCT47635.2019.9011993/. |
21 | Williams J.R., Nicks A., Arnold J.G. Simulator for water resources in rural basins. Journal of Hydraulic Engineering, 1985. no. 111(6): p. 970-986. |
22 | Liu W., Li Zh.W., Zhu J., Xu Ch., Xu X. Dominant factors controlling runoff coefficients in karst watersheds. Journal of Hydrology, 2020, p. 125486. DOI: 10.1016/j.jhydrol.2020.125486/. |
23 | Berihun M.L., Tsunekawa A., Haregeweyn N., Meshesha D.T., Adgo E., Tsubo M., Masunaga T., Fenta A.A., Sultan D., Yibeltal M., Ebabuae K. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Science of The Total Environment, 2019, no. 689, pp. 347-365. DOI: 10.1016/j.scitotenv.2019.06.338/. |