Ushbu maqolada himoya qatlami katalizatorlari sintezi bo‘yicha mavjud xomashyolardan foydalangan holda, katalizatorlar tayyorlash texnologiyasini takomillashtirishga doir tajribalar natijalari muhokama qilingan. Himoya qatlami katalizatorlarini sintez qilish uchun Sho‘rtan gaz-kimyo majmuasi ishlab chiqarishida polietilen eritmasini tozalash jarayonida qo‘llangan alyuminiy oksidli adsorbentini qayta ishlash natijasida olingan alyuminiy gidroksidining psevdobemit modifikatsiyasi ishlatilgan. Bir qator qiyosiy tahlillar natijasida alyuminiy oksidli chiqindilarni qayta ishlab olingan psevdobemit asosida sintez qilingan himoya qatlami katalizatorlari mustahkamlik mezoniga to‘liq javob berishi, SO2 va H2 S ning Muborak gazni qayta ishlash zavodiga xos nisbatda o‘zaro ta’sirida vodorod sulfid va boshqa zararli qo‘shimchalardan gaz oqimini neytrallash jarayoni uchun zarur bo‘lgan fizik-kimyoviiy xususiyatlarga ega ekanligi aniqlandi. Oltingugurt ishlab chiqarishda yuqori faollik va selektivlik Klaus jarayoni katalizatorlarida kuzatildi.
Ushbu maqolada himoya qatlami katalizatorlari sintezi bo‘yicha mavjud xomashyolardan foydalangan holda, katalizatorlar tayyorlash texnologiyasini takomillashtirishga doir tajribalar natijalari muhokama qilingan. Himoya qatlami katalizatorlarini sintez qilish uchun Sho‘rtan gaz-kimyo majmuasi ishlab chiqarishida polietilen eritmasini tozalash jarayonida qo‘llangan alyuminiy oksidli adsorbentini qayta ishlash natijasida olingan alyuminiy gidroksidining psevdobemit modifikatsiyasi ishlatilgan. Bir qator qiyosiy tahlillar natijasida alyuminiy oksidli chiqindilarni qayta ishlab olingan psevdobemit asosida sintez qilingan himoya qatlami katalizatorlari mustahkamlik mezoniga to‘liq javob berishi, SO2 va H2 S ning Muborak gazni qayta ishlash zavodiga xos nisbatda o‘zaro ta’sirida vodorod sulfid va boshqa zararli qo‘shimchalardan gaz oqimini neytrallash jarayoni uchun zarur bo‘lgan fizik-kimyoviiy xususiyatlarga ega ekanligi aniqlandi. Oltingugurt ishlab chiqarishda yuqori faollik va selektivlik Klaus jarayoni katalizatorlarida kuzatildi.
В настоящей статье обсуждены результаты экспериментов по синтезу катализаторов защитного слоя, усовершенствованию технологии приготовления катализаторов с применением доступного сырья, оценки их эффективности в процессах удаления соединений серы, кислорода и элементарной ртути из газовых потоков. Для синтеза катализатора защитного слоя использовали гидроксид алюминия псевдобемитной модификации, полученный переработкой алюмооксидного адсорбента – отхода производства Шуртанского газохимического комплекса после завершения его использования в процессе очистки раствора полиэтилена. В результате проведенного сравнительного анализа установлено, что катализаторы защитного слоя, синтезированные с применением псевдобемита, который получен переработкой алюмооксидных отходов, вполне удовлетворяют критерию прочности, обладают комплексом физико-химических свойств, необходимых для процесса обезвреживания газовых потоков от сероводорода и других вредных примесей, при осуществлении взаимодействия SO2 и H2 S в соотношении, характерном для Мубарекского газоперерабатывающего завода. Наибольшую активность и селективность в получении серы проявил катализатор процесса Клауса.
The aim of the research – this article discusses findings from the experiments on the synthesis of catalysts in the protective layer and improvement of the technology for preparing catalysts using available raw materials. Evaluation of their efficiency in the processes of removing sulfur, oxygen and elemental mercury compounds from gas streams. For the synthesis of a catalyst of the protective layer, aluminum hydroxide of the pseudoboehmite modification was used, which had been obtained by processing of the wastes from the Shurtan gas-chemical complex manufacture – an alumina adsorbent after its use in the process of purifying a polyethylene solution. As a result of a series of comparative analyzes, it was found that the catalysts of the protective layer synthesized using pseudoboehmite obtained by processing of alumina waste completely satisfy the strength criterion, possess a set of physicochemical properties required for dehumidification of gas syrup from hydrogen sulfide and other harmful impurities, when the interaction of SO2 and H2 S in the ratio typical for the Mubarek gas processing plant. The most active and selective catalyst in the production of sulfur was exhibited by the Claus process catalyst.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Isayeva N.F. | texnika fanlari bo‘yicha falsafa doktori (PhD), katta ilmiy xodim | O‘zbekiston Respublikasi Innovatsion rivojlanish vazirligi huzuridagi Ilg‘or texnologiyalar markazi |
2 | Teshabayev Z.A. | texnika fanlari nomzodi | O‘zbekiston kimyo-farmatsevtika ilmiy-tadqiqot instituti |
3 | Mansurova M.. | kimyo fanlari nomzodi, laboratoriya mudiri | O‘zbekiston kimyo-farmatsevtika ilmiy-tadqiqot instituti |
4 | Yalgashev E.Y. | kichik ilmiy xodim | O‘zbekiston kimyo-farmatsevtika ilmiy-tadqiqot instituti |
5 | Annenkova A.A. | laborant | O‘zbekiston kimyo-farmatsevtika ilmiy-tadqiqot instituti |
6 | Iskandarov N.E. | kichik ilmiy xodim | O‘zbekiston kimyo-farmatsevtika ilmiy-tadqiqot instituti |
№ | Название ссылки |
---|---|
1 | Kidni A.D., Parrish U.R., Makkartni D. Osnovy pererabotki prirodnogo gaza [Natural gas processing basics. Edited by O.P. Lykova]. Saint Petersburg, COP Professiya, 2014, pp. 565-578. |
2 | Startsev A.N., Kruglyakova O.V., Chesalov Yu.A., Paukshtis E.A., Avdeev V.I., Ruzankin S.Ph., Zhdanov A.A., MolinaI. Yu., Plyasova L.M. Low temperature catalytic decomposition of hydrogen sulfide on metal catalysts under layerof solvent. Sulf. Chem., 2016, vol. 37, no. 2, pp. 229-240. DOI: doi.org/10.1 080/17415993.2015.1126593/. |
3 | Startsev A.N., Bulgakov N.N., Ruzankin S.Ph., Kruglyakova O.V., Paukshtis E.A. The reaction thermodynamics of hydrogen sulfide decomposition into hydrogen and diatomic sulfur. Sulfur Chem., 2015, vol. 36, no. 3, pp. 234-239. DOI: doi.org/10.1080/17415993.2015.1010533/. |
4 | Mahoshvili Ju.A., Filatova O.E. Ispol’zovanie zashhitnyh katalizatorov na ustanovkah poluchenija sery [Use of protective catalysts in sulfur recovery units]. Gazovaya promishlennost’, 2002, no. 6, pp. 76-78. |
5 | Clark P.D., Dowling N.I., Huang M. et al. Studies on sulfate formation during the conversion of H2 S and SO2 to sulfur over activated alumina. Appl. Cat. 2002, A: General, no. 235, pp. 61-69. |
6 | Golubeva I.A., Hajrulina G.R., Starynin A.Ju., Karatun O.N. Analiz proizvodstva sery metodom Klausa na neftegazovyh predprijatijah, nereshennye problem [Analysis of sulfur production by the Claus method in oil and gas enterprises, unsolved problems]. Neftegazohimija – Oil and gas chemistry, 2017, no. 3, pp. 5-12. |
7 | Berberova N.T., Pivovarova N.A., Storozhenko V.N., Shinkar’ E.V., Smoljaninov I.V. Razrabotka novyh sposobov utilizacii sernistyh othodov iz uglevodorodnogo syr’ja v razlichnye proizvodnye sery. Fundamental’nye issledovanija i prikladnye razrabotki processov pererabotki i utilizacii tehnogennyh obrazovanij. Trudy kongressa [Development of new methods for the utilization of sulfur waste from hydrocarbon raw materials into various derivative series. Fundamental research and applied development of the processes of processing and utilization of technogenic formations. Proceedings of Congress]. Moscow, Tehnogen, 2019, pp. 240-243. |
8 | Moxapatra M. Synthesis and applications of nano-structured iron oxides/hydroxides. A review. M. Moxapatra, S. Anand. International J. Engr Sci. Technology, 2010, vol. 2, no. 8, pp. 127-146. DOI: doi.org/10.4314/ijest.v2i8.63846/. |
9 | Liu G. Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin. A review. G. Liu. Langmuir, 2006, vol. 22, no. 22, pp. 9313-9321. |
10 | Rancourt D.G., Meunier J-F. Constraints on structural models of ferrihydrite as a nanocrystalline material. A review. D.G. Rancourt, J-F. Meunier. American Mineralogist, 2008, vol. 93, no. 8-9, pp. 1412-1417. |
11 | Abdus-Salam N. Synthesis, Characterization and Application of 2-Line and 6-Line Ferrihydrite to Pb (II) Removal from Aqueous Solution. A review. N. Abdus-Salam, F.A. M’Siver. Journal of Applied Sciences and Environmental Management, 2012, vol. 16, no. 4, pp. 327-336. |
12 | Kotikov D.A., Ivanovskaya M.I. Ispol’zovanie zol’-gel’ metoda dlja sinteza razlichnyh strukturnyh modifikacij oksida zheleza (III) v nanorazmernom sostojanii [The use of the sol-gel method for the synthesis of various structural modifications of iron oxide (III) in the nanoscale state]. Vestnik belorusskogo universiteta – Bulletin of the Belarusian University, Series 2, Chemistry, Biology, Geography, 2005, no. 2, p. 11. |
13 | Shuvaeva M.A., Litvak G.S., Varnek V.A., Buhtiyarova G.A. Prigotovlenie zhelezosoderzhashhih katalizatorov nanesennogo tipa iz rastvora FeSO4 : vlijanie prirodj nositelja [Preparation of Iron-Containing Supported Type Catalysts from a FeCO4 Solution: Effect of the Nature of the Support]. Kinetika i kataliz – Kinetics and catalysis, 2009, vol. 50, no. 6, pp. 910-913. |
14 | Bukhtijarova G.A., Shuvaeva M.A., Bujukov O.A., Yakishkin S.S., Martjanov O.N. Facile synthesis of nanosized c-Fe203 particles on the silica support. Journal of Nanoparticle Research, 2011, vol. 13, pp. 5527-5534. DOI: doi.org/10.1007/s11051-011-0542-5/. |
15 | Buhtijarova G.A., Mart’janov O.N., Jakushkin S.S., Shuvaeva M.A., Bayukov O.A. Sostojanie zheleza v nanochasticah, poluchennyh metodom propitki silikagelja i oksida aljuminija rastvorom FeSO4 [The State of Iron in Nanoparticles Obtained by the Impregnation of Silica Gel and Aluminum Oxide with a FeCO4 Solution]. Fizika tvjordogo tela – Solid state physics, 2010, vol. 52, no. 4, pp. 771-781. |
16 | Gich V., Roig A., Frontera C., Molins E. Large coercivity and low-temperature magnetic reorientation in e-Fe203 nanoparticles. Appl. Phys., 2005, vol. 98, pp. 44301-44307. |
17 | Petrova E., Kotsikau D., Pankov V. Structural characterization and magnetic properties of sol– gel derived ZnxFe3 –xO4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, no. 378, pp. 429-435. DOI: doi.org/10.1016/j.jmmm.2014.11.076/. |
18 | Shevkunov S.N. Processy pererabotki gazovogo kondensata s povyshennym soderzhaniem rtuti. Nauchno-tehnicheskij sbornik [Processes for processing gas condensate with high mercury content. Scientific and technical collection]. Vesti gazovoj nauki – News of gas science, 2018, no. 1 (33), pp. 207-215. |
19 | Adzhiev A.Ju, Shein A.O. Primenenie zashhitnogo sloja na ustanovkah osushki gaza [Application of a protective layer in gas dehydration plants]. Bashkirskij himicheskij zhurnal – Bashkir Chemical Journal, 2009, vol. 16, no. 1, pp. 122-124. |
20 | Machulin L.V., Latyshev A.A. Metodicheskoe obespechenie monitoringa pokazatelej kachestva gaza, transportiruemogo po magistral’nym gazoprovodam [Methodological support for monitoring the quality indicators of gas transported through main gas pipelines]. Gazovaja promyshlennost’ – Gas industry, 2020, no. 7 (803), pp. 40-50. |
21 | Gaz prirodnyj. Opredelenie rtuti. Ch.1. Podgotovka probi putyom xemosorbcii rtuti na jode [Natural gas. Definition of mercury. Part 1. Sample preparation by chemisorption of mercury on food]. Rosstandart. GOST 28726.1-2017. |
22 | Mirzaeva E.I. Poluchenie gidrookisi aljuminija dlja proizvodstva katalizatorov iz otrabotannogo aljumooksidnogo adsorbenta. Pererabotka nefti i gaza, al’ternativnoe toplivo. Materialy Respublikanskoj nauchno-tehnicheskoj konferencii [Obtaining aluminum hydroxide for the production of catalysts from spent aluminum oxide adsorbent. Oil and gas processing, alternative fuel. Materials of the Republican Scientific and Technical Conference]. Tashkent, 2016, pp. 81-84. |
23 | Mansurova M. Klaus usulida oltingugurt olish katalizatori va uni olish usuli [Catalyst for sulfur extraction in the Klaus method and its extraction method]. Patent UZ IAP 05603 MPK 15.05.2015. |
24 | Jalgashev E.Ja., Mansurova M.S., Artukova G.Sh., Isaeva N.F. Ibodullaev S.A., Iskandarov N.E. Genezis morfologii i fazovogo sostava adsorbentov i katalizatorov v processe seroochistki gazov [Genesis morphology and phase composition of the adsorbent and catalysts in the process of desulphurization of gases]. Universum, chemistry and biology, 2021, no. 9 (87), pp. 67-25. Available at: https:// 7universum. com/ru/nature/ archive/item/12210/. |