193

Ushbu maqolada markazlashgan energiya ta’minotidan uzoqda joylashgan hududlardagi issiqlik va elektr energiyasi iste’molchilari uchun to‘liq muqobil energiya manbalari asosidagi avtonom energiya ta’minoti tizimiga ega mobil uyning asosiy o‘lcham va parametrlari keltirilgan. Mobil uyning umumiy prinsipial sxemasi, ya’ni quyosh kollektori, quyosh fotobatareyasi, piroliz va biogaz qurilmalarining integratsiyalashgan namunasining mobil (ko‘chma) uyga o‘rnatilgan ko‘rinishi tasvirlangan. Bundan tashqari, mobil uyni qo‘llash obyekti hamda uning qishloq va fermer xo‘jaligi klasterlari, baliqchilik, asalarichilik sohalari uchun energetik va iqtisodiy samaradorligi bayon qilingan. Maqolada, shuningdek, mobil uyga o‘rnatilgan qurilmalarning ishlash ketma-ketligi va prinsiplari yoritilgan.

  • Количество прочтений 135
  • Дата публикации 15-08-2023
  • Язык статьиO'zbek
  • Страницы53-61
Ўзбек

Ushbu maqolada markazlashgan energiya ta’minotidan uzoqda joylashgan hududlardagi issiqlik va elektr energiyasi iste’molchilari uchun to‘liq muqobil energiya manbalari asosidagi avtonom energiya ta’minoti tizimiga ega mobil uyning asosiy o‘lcham va parametrlari keltirilgan. Mobil uyning umumiy prinsipial sxemasi, ya’ni quyosh kollektori, quyosh fotobatareyasi, piroliz va biogaz qurilmalarining integratsiyalashgan namunasining mobil (ko‘chma) uyga o‘rnatilgan ko‘rinishi tasvirlangan. Bundan tashqari, mobil uyni qo‘llash obyekti hamda uning qishloq va fermer xo‘jaligi klasterlari, baliqchilik, asalarichilik sohalari uchun energetik va iqtisodiy samaradorligi bayon qilingan. Maqolada, shuningdek, mobil uyga o‘rnatilgan qurilmalarning ishlash ketma-ketligi va prinsiplari yoritilgan.

Русский

В данной статье представлены основные размеры и параметры мобильного дома с автономной системой энергоснабжения на базе полностью альтернативных источников энергии для потребителей тепловой и электрической энергии в районах, удаленных от централизованного энергоснабжения. Описана общая принципиальная схема мобильного дома, то есть интегрированный образец солнечного коллектора, солнечной фотобатареи, пиролизных и биогазовых установок, а также внешний вид дома. Кроме того, в статье описывается объект применения мобильного дома, потребители мобильного дома, а также его энергетическая и экономическая эффективность в сферах сельскохозяйственных и фермерских кластеров, рыболовства и пчеловодства. В статье представлена последовательность и принципы работы устройств, установленных в мобильном доме.

English

This article lists the main dimensions and parameters of a mobile home with an autonomous energy supply system based on completely alternative energy sources for consumers of heat and electricity in regions far from centralized energy supply. An integrated example of a mobile home’s general principled circuit, such as a solar collector, solar photobathare, pyrolysis, and biogas devices, is described as a mobile (portable) home-mounted view and home exterior. In addition, the article describes the Mobile Home application facility under research and the energy and economic efficiency for rural and farm clusters, fishing beekeeping industries. The article presents the sequence and principles of operation of devices installed in a mobile home.

Имя автора Должность Наименование организации
1 Toshmamatov B.M. “Muqobil energiya manbalari” kafedrasi katta oʻqituvchisi Qarshi muhandislik-iqtisodiyot instituti
2 Raxmatov A.R. “Muqobil energiya manbalari” kafedrasi magistranti, Qarshi muhandislik-iqtisodiyot instituti
Название ссылки
1 Aliyarova, L., Uzakov, G., & Toshmamatov, B. (2021). The efficiency of using a combined solar plant for the heat and humidity treatment of air. IOP Conference Series: Earth and Environmental Science, 723(5), 052002.
2 Allayev, Q. (2021). Modern energy and its development prospects. Tashkent: Fan va texnika nashriyoti.
3 Beckman, W., Klein, S., & Duffy, J. (1982). Calculation of the solar heating system. Moscow: Energoizdat.
4 El-Sayed, K., Samir, A., Manar, S., Jasna, T., Jutta, H., & Azra, K. (2020). Development of a Bio Solar House Model for Egyptian Conditions. Energies(13), 817. doi:10.3390/en13040817
5 Esen, H., Esen, M., & Ozsolak, O. (2017). Modelling and experimental performance analysis of solar-assisted ground source heat pump system. Exp. Theor. Artif. Intell., 29(1), 1-17.
6 Esen, M., & Ayhan, T. (1996). Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers. Manage, 37(12), 1775–1785.
7 Esen, M., Durmus, A., & Durmus, A. (1998). Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Sol. Energy(62), 19-28.
8 Gudina, T., & Sanderine, N. (2017). Alternative energy supply system to a rural village in Ethiopia. Tucho and Nonhebel Energy, Sustainability and Society(7), 33. doi:10.1186/s13705-017-0136-x
9 Kharchenko, V., Sychov, A., & Uzakov, G. (2019). Innovative instruments for extraction of low-grade heat from surface watercourses for heating systems with heat pump. EAI/Springer Innovations in Communication and Computing(2), 59-68.
10 Klen, A., & Yefremenko, V. (2015). Economic efficiency of using hot water systems based on solar collectors. Technological Audit and Production Reserves, 5/5(25), 10-14.
11 Krivoshein, Y., Tsvetkov, N., & Khutornoy, A. (2017). Automated dual hot water system using solar energy and gas boiler. Heat Supply, Ventilation, Air Conditioning, Gas Supply and Lighting, 163-173.
12 Liu, Y., Li, T., Song, C., Wang, D., & Liu, J. (2018). Field study of different thermal requirements based on the indoor activities patterns of rural residents in winter in Northwest China. Science and Technology for the, Built Environment, 24(8), 867-877.
13 Mamatkulova, S., & Uzakov, G. (2022). Modeling and calculation of the thermal balance of a pyrolysis plant for the production of alternative fuels from biomass. IOP Conference Series: Earth and Environmental Science, 1070(1), 012040.
14 Norbert, H., Zeljko, J., & Nikolai, V. (2015). Energy Consumption Modelling via Heat Balance Method for Energy Performance of a Building. Procedia Engineering(117), 786-794. doi:10.1016/j.pro-eng.2015.08.23
15 Paraschiv, S., & Paraschiv, L. (2020). Technical and economic analysis of a solar air heating system integration in a residential building wall to increase energy efficiency by solar heat gain and thermal insulation. Energy Reports(S6), 459-474.
16 Rakhmatov, A. (2021). Energy efficient solar water heater. Proceedings of the International Scientific-online Conference on Innovation in the Modern Education System. Washington.
17 Sychov, A., Kharchenko, V., Vasant, P., & Uzakov, G. (2019). Application of Various Computer Tools for the Optimization of the Heat Pump Heating Systems with Extraction of Low-Grade Heat from Surface Watercourses. Advances in Intelligent Systems and Computing(866), 310–319.
18 Uzakov, G., Elmurodov, N., & Davlonov, X. (2022). Experimental study of the temperature regime of the solar pond in the climatic conditions of the south of Uzbekistan. IOP Conference Series: Earth and Environmental Science, 1070(1), p. 012026.
19 Uzakov, G., Shomuratova, S., & et al. (2021). Study of a solar air heater with a heat exchanger – accumulator. IOP Conf. Series: Earth and Environmental Science, 723 , 052013. doi:10.1088/1755- 1315/723/5/052013
20 Uzakov, G., Toshmamatov, B., Kodirov, I., & Shomuratova, S. (2020). On the efficiency of using solar energy for the thermal processing of municipal solid waste. Journal of Critical Reviews, 7(5).
21 Uzokov, G., & Davlonov, X. (2021). Energy-efficient greenhouses with pyrolysis devices. Karshi: Intellect.
22 Uzokov, G., Khamrayev, S., Khujakulov, S., & Kamolov, B. (2021). Assessment of the potential of solar energy resources in Kashkadarya region. FarPI Journal of Scientific Techniques, 25(2), 82-90.
23 Wang, D., Zhang, R., Liu, Y., Zhang, X., & Fan, J. (2021). Optimization of the flow resistance characteristics of the direct return flat plate solar collector field. Sol. Energy(215), 388-402.
24 Wang, Y., Kang, W., Liu, Y., Huang, R., & Liu, J. (2018). A heating strategy for rural residential buildings based on behavior patterns of residents in shaanxi province. Acta Energiae Solaris Sinica(39), 3026-3031.
25 Yu, K., Tan, Y., Zhang, T., Zhang, J., & Wang, X. (2020). The traditional Chinese kang and its improvement: A review. Energy Build(218), 110051. doi:10.1016/j.enbuild.2020.110051
26 Zhuang, Z., Li, Y., Chen, B., & Guo, J. (2009). Chinese kang as a domestic heating system in rural northern China – A review. Energy Build, 41(1), 111-119.
В ожидании