59

Ushbu maqolada asinxron motor reaktiv quvvatini nazorat qilish va boshqarish uchun boshqariluvchan chiqish kuchlanishli tok o‘zgartkichidan foydalanildi. Tok o‘zgartkichining ishonchliligi, sezgirligi, o‘lchash aniqlik va xatoliklarining dinamik tavsiflari Simulnik dasturidan foydalanilgan holda olindi. Tok o‘zgartkichlari, asosan, asinxron motor elektr ta’minoti tizimining normal barqaror ish rejimi davrida ishlaydi. Bu rejimda ba’zi shartli chegaralar bilan tok o‘zgartkichlarini tadqiq etishda kirish tokining minimal va maksimal qiymatlari qabul qilinadi, buning uchun aniqlik sinfi (0,1‒1,2)∙Inom deb olinadi. Elektr jihozlar va tarmoqlardagi shikastlanishlar asinxron motor elektr ta’minoti tizimining halokatli ish rejimiga olib keladi. Bu holda tok o‘zgartkichlari dinamik rejimda ishlaydi. Asinxron motorda qisqa tutashuvlar elektromagnit tok o‘zgartkichlarining dinamik rejimlarda ishlashiga olib keluvchi asosiy sababdir. Elektromagnit tok o‘zgartkichlarining bunday rejimda ishlashi boshqaruv tizimi sxemalaridagi ishlash shartlaridan sezilarli farq qiladi. Agar elektromagnit tok o‘zgartkichlari o‘lchov maqsadida ishlatilsa, odatda, nominaldan oshmagan birlamchi tokda ishlashi talab etiladi. Bunda asinxron motorning boshqaruv tizimlarida qo‘llanuvchi elektromagnit tok o‘zgartkichlari nominaldan ancha katta toklarda, o‘tish rejimi sharoitlarida, masalan, qisqa tutashuv va shikastlanish hollarida o‘z funksiyalarini bajarishi shart.

  • Количество прочтений 0
  • Дата публикации 29-04-2022
  • Язык статьиO'zbek
  • Страницы133-139
Ўзбек

Ushbu maqolada asinxron motor reaktiv quvvatini nazorat qilish va boshqarish uchun boshqariluvchan chiqish kuchlanishli tok o‘zgartkichidan foydalanildi. Tok o‘zgartkichining ishonchliligi, sezgirligi, o‘lchash aniqlik va xatoliklarining dinamik tavsiflari Simulnik dasturidan foydalanilgan holda olindi. Tok o‘zgartkichlari, asosan, asinxron motor elektr ta’minoti tizimining normal barqaror ish rejimi davrida ishlaydi. Bu rejimda ba’zi shartli chegaralar bilan tok o‘zgartkichlarini tadqiq etishda kirish tokining minimal va maksimal qiymatlari qabul qilinadi, buning uchun aniqlik sinfi (0,1‒1,2)∙Inom deb olinadi. Elektr jihozlar va tarmoqlardagi shikastlanishlar asinxron motor elektr ta’minoti tizimining halokatli ish rejimiga olib keladi. Bu holda tok o‘zgartkichlari dinamik rejimda ishlaydi. Asinxron motorda qisqa tutashuvlar elektromagnit tok o‘zgartkichlarining dinamik rejimlarda ishlashiga olib keluvchi asosiy sababdir. Elektromagnit tok o‘zgartkichlarining bunday rejimda ishlashi boshqaruv tizimi sxemalaridagi ishlash shartlaridan sezilarli farq qiladi. Agar elektromagnit tok o‘zgartkichlari o‘lchov maqsadida ishlatilsa, odatda, nominaldan oshmagan birlamchi tokda ishlashi talab etiladi. Bunda asinxron motorning boshqaruv tizimlarida qo‘llanuvchi elektromagnit tok o‘zgartkichlari nominaldan ancha katta toklarda, o‘tish rejimi sharoitlarida, masalan, qisqa tutashuv va shikastlanish hollarida o‘z funksiyalarini bajarishi shart.

Русский

В этой статье описывается управляемый преобразователь выходного напряжения в ток для контроля и управления реактивной мощностью асинхронного двигателя. Динамические характеристики преобразователя тока были получены с помощью программы Simulink с учетом надежности, чувствительности, точности измерения и погрешности. Преобразователи тока в основном эксплуатируются при нормальной устойчивой работе системы питания асинхронного двигателя. В этом режиме при исследовании преобразователей тока с некоторыми условными пределами принимаются минимальное и максимальное значения входного тока, для которых устанавливается класс точности (0,1‒1,2)∙Iном. Повреждение электрооборудования и сетей может привести к аварийному режиму работы системы электроснабжения асинхронного двигателя, в этом случае преобразователи тока работают в динамическом режиме. Короткие замыкания в асинхронном двигателе являются основной причиной работы электромагнитных преобразователей тока в динамических режимах. Условия работы адаптеров электромагнитного тока в таких режимах существенно отличаются от условий работы в цепях системы управления. Если для целей измерения используются адаптеры электромагнитного тока, то обычно требуется, чтобы они работали при первичном токе, не превышающем номинальный ток, и выполняли свои функции в случае повреждения.

English

This article uses a controlled output voltage-to-current converter to control the reactive power of an induction motor. The dynamic characteristics of the current converter were obtained using the Simulink program, taking into account reliability, sensitivity, measurement accuracy and error. Current converters are mainly operated during normal stable operation of the power supply system of an asynchronous motor. In this mode, when studying current transducers with certain conditional limits, the minimum and maximum values of the input current are accepted, for which the accuracy class (0.1‒1.2)∙Inom is set. Damage to electrical equipment and networks can lead to emergency operation of the power supply system of an asynchronous motor, in which case the current converters operate in dynamic mode. Short circuits in an asynchronous motor are the main reason for the operation of electromagnetic current converters in dynamic modes. The operating conditions of electromagnetic current adapters in such modes differ significantly from the operating conditions in the control system circuits. If electromagnetic current adapters are used for measurement purposes, they are usually required to operate at a primary current not exceeding the rated current and must perform their functions in the event of a fault.

Имя автора Должность Наименование организации
1 Boixanov Z.U. doktorant Andijon mashinasozlik institut
Название ссылки
1 Loukianov A., Rivera J., Alanis A., Raygoza J. Super-twisting sensorless control of linear induction motors. Electrical engineering, computing science and automatic control (CCE), 2012, 9th international conference, 2012, pp. 1-5.
2 Bucci G., Meo S., Ometto A., Scarano M. The control of LIM by a generalization of standard vector techniques. Industrial electronics, control and instrumentation, 1994. IECON’94, 20th international conference, 1994, pp. 623-626.
3 Zhang Z., Eastham T.R., Dawson G.E. Peak thrust operation of linear induction machines from parameter identification. Industry applications conference, 1995. Thirtieth IAS annual meeting, IAS’95, Conference Record of the 1995 IEEE, 1995, pp. 375-379.
4 Da Silva E.F., Dos Santos C.C., Nerys J.W.L. Field oriented control of linear induction motor taking into account end-effects. Advanced motion control, 2004. AMC ’04. The 8th IEEE international workshop, 2004, pp. 689-694.
5 Da Silva E.F., Dos Santos E.B., Machado P.C.M., De Oliveria M.A.A. Vector control for linear induction motor. Industrial technology, 2003. IEEE international conference, 2003, vol. 1, pp. 518-523.
6 Rathore A.K., Mahendra S.N. Direct secondary flux oriented control of linear induction motor drive. Industrial technology, 2006. ICIT 2006. IEEE international conference, 2006, pp. 1586-1590.
7 Motlagh S., Fazel S.S. Indirect vector control of linear induction motor considering end effect. Power electronics and drive systems technology (PEDSTC), 2012, 3rd, pp. 193-198.
8 Jeong-Hyoun S., Kwanghee N. A new approach to vector control for a linear induction motor considering end effects. Industry applications conference, 1999. Thirty-fourth IAS annual meeting. Conference record of the 1999 IEEE, 1999, vol. 4, 1999, pp. 2284-2289.
9 Makhsudov M.T., Boykhonov Z.U. Issledovaniye elektromagnitnykh preobrazovateley toka v napryazheniye [Research of electromagnetic current-to-voltage converters]. Byulleten’ nauki i praktiki – Bulletin of Science and Practice, 2018, vol. 4, no. 3, pp. 150-154. Available at: http://www.bulletennauki. com/mahsudov/ (accessed 03.15.2018).
10 Siddikov I.Kh., Makhsudov M.T., Boikhanov Z.U. Skhema zameshcheniya i analiz raboty asinkhronnogo dvigatelya pri potreblenii reaktivnoy moshchnosti [Substitution scheme and analysis of the operation of an asynchronous motor with the consumption of reactive power]. Glavnyy energetik – Chief Power Engineer, 2021, no. 7.
11 Egamov D.A., Uzakov R., Boikhonov Z.U. Effektivnost’ primeneniya «Perenosnogo AVR-0, 4 kV» dlya obespecheniya bespereboynogo elektrosnabzheniya potrebiteley [The effectiveness of the “Portable AVR-0, 4 kV” to ensure uninterrupted power supply to consumers]. 2019.
12 Egamov D.A., Uzakov R., Boykhonov Z.U. Sposoby obespecheniya bespereboynogo elektrosnabzheniya potrebiteley, imeyushchikh odnu sistemu shin 6-10 kV i dva nezavisimykh istochnika pitaniya 6-10 kV [Ways to ensure uninterrupted power supply to consumers with one bus system 6-10 kV and two independent power sources 6-10 kV]. Byulleten’ nauki i praktiki – Bulletin of science and practice, 2018, vol. 4, no. 3, pp. 155-159. Available at: http://www.bulletennauki.com/egamov-uzakov/ (accessed 03.15.2018).
13 Kudrin B.I. Power supply of industrial enterprises. Moscow, Intermet Engineering, 2005, p. 672.
14 Andreev V. A. Relay protection and automation of power supply. Moscow, Graduate School, 2006, p. 639.
15 Kakuevitsky L.I., Krupitsky, A.Yu., Sakov A.D., Smirnova T.V. Reference book of the relay of protection and automatics. 2nd ed., revised. and additional. Moscow, Energy, 1968, p. 296.
16 Bubenchikov A.A., Demidova N.G., Komarov A.G., Gorbachev V.V., Bubenchikova T.V. It is possible to use alternative energy sources in the Omsk region. Omsk Scientific Bulletin, 2017, no. 6.
17 Gubina O.A., Malafeev A.V. An analysis of the observability of electric grids by “MES”. Intellectual power systems: works of the V International Youth Forum, 2017, October 9-13. Tomsk, 2017, vol. 3, no. 3, pp. 87-90.
18 Lapin N.A., Korolev M.E. The problem of monitoring the quality of electricity. Problems of modern science and education, 2017, no. 1, pp. 44-46.
19 Lukutin B.V., Obukhov S.G. Mikrogidroelektrostantsiya s avtoballastnoy nagruzkoy, reguliruyemoy po chastote vykhodnogo napryazheniya [Microhydro power plant with auto-ballast load, frequencycontrolled output voltage]. Elektromekhanika – Electromechanics, 1990, no. 6.
20 Lukutin B.V., Obukhov S.G. Osobennosti raboty mikroGES na asinkhronnyy dvigatel’ soizmerimoy moshchnosti [Peculiarities of operation of a microhydroelectric power station for an asynchronous motor of commensurate power]. Elektrotekhnika, 1991, no. 7, pp. 36-40.
21 Konstantinov G.G., Mayorov G.S. Razrabotka i issledovaniye avtonomnogo istochnika elektroenergii na baze mikroGES i asinkhronnogo generatora s kondensatornym vozbuzhdeniyem [Development and research of an autonomous source of electricity based on micro hydroelectric power plants and an asynchronous generator with capacitor excitation]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – Bulletin of the Irkutsk State Technical University, 2018, no. 10 (141), pp. 92-116. Available at: https://cyberleninka.ru/article/n/razrabotka-i-issledovanie-avtonomnogoistochnika-elektroenergii-na-baze-mikroges-i-asinhronnogo-generatora-s-kondensatornym (accessed 04.04.2022).
В ожидании