The effect of starting solvent on the performance of cobalt-based catalysts and potassium precipitated iron catalysts was investigated during Fischer-Tropsch (FT) synthesis using a continuously stirred tank reactor. In this study, starting solvents of four different molecular weights were tested: Polywax-3000 (MW (average molecular weight) = 3000), Polywax-2000 (MW = 2000), Polywax-500 ( MW = 500) and C-30 oil (MW = 420). Conversion and selectivity (methane, C5?, and CO2) were similar for all starting solvents tested for potassium-supplied precipitated iron catalysts, with significant differences in starting solvent for the iron catalyst tested. there is. indicates no effect. However, with the cobalt catalyst, the conversion varied with the solvent, with the conversion increasing as the molecular weight of the solvent decreased. This is believed to be due to the particle size of cobalt alumina catalysts compared to the iron used. Under synthesis conditions, the iron catalyst produces a measurable fraction of 1-3 micron size particles in the lower range of the particle size distribution, while the alumina support maintains the same, larger size during synthesis. Thus, the decrease in conversion with time may be the result of solvent filling of the pores in the interior of the catalyst, which increases with increasing molecular weight of the starting solvent. Wax formation must be considered when deriving conversion and aging data for FT catalysts.
The effect of starting solvent on the performance of cobalt-based catalysts and potassium precipitated iron catalysts was investigated during Fischer-Tropsch (FT) synthesis using a continuously stirred tank reactor. In this study, starting solvents of four different molecular weights were tested: Polywax-3000 (MW (average molecular weight) = 3000), Polywax-2000 (MW = 2000), Polywax-500 ( MW = 500) and C-30 oil (MW = 420). Conversion and selectivity (methane, C5?, and CO2) were similar for all starting solvents tested for potassium-supplied precipitated iron catalysts, with significant differences in starting solvent for the iron catalyst tested. there is. indicates no effect. However, with the cobalt catalyst, the conversion varied with the solvent, with the conversion increasing as the molecular weight of the solvent decreased. This is believed to be due to the particle size of cobalt alumina catalysts compared to the iron used. Under synthesis conditions, the iron catalyst produces a measurable fraction of 1-3 micron size particles in the lower range of the particle size distribution, while the alumina support maintains the same, larger size during synthesis. Thus, the decrease in conversion with time may be the result of solvent filling of the pores in the interior of the catalyst, which increases with increasing molecular weight of the starting solvent. Wax formation must be considered when deriving conversion and aging data for FT catalysts.
Kobaltga asoslangan katalizatorlar va kaliy cho‘kma temir katalizatorlarining ishlashiga boshlang‘ich erituvchining ta’siri Fisher-Tropsch (FT) sintezi davomida doimiy aralashtiriladigan tank reaktoridan foydalangan holda o‘rganildi. Ushbu tadqiqotda to‘rt xil molekulyar og‘irlikdagi boshlang‘ich erituvchilar sinovdan o‘tkazildi: Polywax-3000 (MW (o‘rtacha molekulyar og‘irlik) = 3000), Polywax-2000 (MW = 2000), Polywax-500 (MW = 500) va C-30 moyi (MVt = 420). Konversiya va selektivlik (metan, C5? va CO2) kaliy bilan ta’minlangan cho‘kma temir katalizatorlari uchun sinovdan o‘tgan barcha boshlang‘ich erituvchilar uchun o‘xshash edi, sinovdan o‘tgan temir katalizatori uchun boshlang‘ich erituvchida sezilarli farqlar mavjud, ta’siri yo‘qligini ko‘rsatadi. Biroq, kobalt katalizatori bilan konvertatsiya erituvchiga qarab o‘zgarib turdi, erituvchining molekulyar og‘irligi kamayishi bilan konversiya ortdi. Bu ishlatiladigan temirga nisbatan kobalt alyuminiy katalizatorlarining zarracha hajmiga bog‘liq deb hisoblanadi. Sintez sharoitida temir katalizatori zarracha hajmi taqsimotining pastki oralig‘ida 1-3 mikron o‘lchamdagi zarrachalarning o‘lchanadigan qismini ishlab chiqaradi, alyuminiy tayanchi esa sintez paytida bir xil, kattaroq hajmni saqlaydi. Shunday qilib, vaqt o‘tishi bilan konversiyaning pasayishi katalizatorning ichki qismidagi teshiklarni erituvchi bilan to‘ldirish natijasi bo‘lishi mumkin, bu esa boshlang‘ich erituvchining molekulyar og‘irligi oshishi bilan ortadi. FT katalizatorlari uchun konvertatsiya ma’lumotlarini olishda mum hosil bo‘lishini hisobga olish kerak.
Влияние исходного растворителя на характеристики катализаторов на основе кобальта и железных катализаторов, осажденных калием, исследовали во время синтеза Фишера-Тропша (FT) с использованием резервуарного реактора с непрерывным перемешиванием. В данном исследовании были испытаны исходные растворители четырех различных молекулярных масс: Поливакс-3000 (МВ (средняя молекулярная масса) = 3000), Поливакс-2000 (МВ = 2000), Поливакс-500 (МВ = 500) и масло С-30. (МВт = 420). Конверсия и селективность (метан, C5? и CO2) были одинаковыми для всех исходных растворителей, протестированных для осажденных железных катализаторов с калием, со значительными различиями в исходном растворителе для протестированных железных катализаторов. есть. указывает на отсутствие эффекта. Однако при использовании кобальтового катализатора конверсия варьировалась в зависимости от растворителя, причем конверсия увеличивалась по мере уменьшения молекулярной массы растворителя. Считается, что это связано с размером частиц катализаторов на основе оксида алюминия-кобальта по сравнению с размером частиц используемого железа. В условиях синтеза железный катализатор производит измеримую фракцию частиц размером 1-3 микрона в нижнем диапазоне распределения частиц по размерам, в то время как носитель из оксида алюминия сохраняет тот же более крупный размер во время синтеза. Таким образом, снижение конверсии со временем может быть результатом заполнения растворителем пор внутри катализатора, которое увеличивается с увеличением молекулярной массы исходного растворителя. Образование парафина необходимо учитывать при получении данных о конверсии и старении катализаторов ФТ.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Nematov K.. | PhD | Karshi engineering-economics institute |
2 | Abdullaev B.. | Assistent | Karshi engineering-economics institute |
3 | Sayfullaev T.. | Assistent | Karshi engineering-economics institute |
№ | Название ссылки |
---|---|
1 | D. Tailor, Field Joint Developments and Compatibility Considerations, ResearchGate, October 2003. |
2 | Journal of Protective Coatings and Linings, Protecting and Maintaining Transmission Pipeline, Technology Publishing Company, Pittsburgh, 2012. |
3 | Rizayev, S. A., Abdullayev, B. M., & Jumaboyev, B. O. (2023). Gazlarni kimyoviy aralashmalardan tozalash jarayonini tadqiq qilish. Sanoatda raqamli texnologiyalar/Цифровые технологии в промышленности, 1(1), 71-75. |
4 | Rizayev, S., & Abdullayev, B. (2022). Etilen asosida benzol olish va uni sanoatda erituvchi sifatida qo ‘llash. Journal of Integrated Education and Research, 1(6), 99-102. |
5 | Khudayorovich, R. D., Rizoevich, R. S., & Abdumalikovich, N. F. (2022). Modern catalysts for acetylene hydrochloration. Galaxy International Interdisciplinary Research Journal, 10(2), 27-30. |
6 | Abdullayev, K. O. A. I. (2023). Research of the catalytic properties of a catalyst selected for the production of high-molecular weight liquid synthetic hydrocarbons from synthesis gas. Химическая технология, 14(10), 115. |
7 | Abdullaev, B. M., & Sayfullaev, T. K. (2023). Analysis of the causes of accidents in gas pipelines transport, national economy and main pipelines. journal of multidisciplinary bulletin, 6(4), 123-126. |
8 | Torayevich, K. M. (2023). Determination of the influence of the composition of catalysts on the catalytic characteristics. journal of multidisciplinary bulletin, 6(5), 8-15. |
9 | Torayevich, K. M. (2023). Development of hybrid catalyst and synthesis of liquid hydrocarbons based on them. journal of multidisciplinary bulletin, 6(5), 1-7. |
10 | Karshiev, M. T., Kh, S. T., & Abdullaev, B. M. (2023). Purification of natural gas from co2 by adsorption method. journal of multidisciplinary bulletin, 6(5), 62-76. |
11 | Xayrulla o‘g‘li, S. T. (2022). Yoʻldosh gazlarni qayta ishlash zavodlaridagi korroziya bilan bogʻliq muammolarni yechishda ingibitorlardan foydalanish. Journal of new century innovations, 10(4), 20-22. |
12 | Rahmatovich, C. N., & Xayrulla o‘g‘li, S. T. (2022). Yoʻldosh gaz-kondensatlarini barqarorlashtirish qurilmalarida ingibitorlardan foydalanish. Journal of new century innovations, 10(4), 23-25. |
13 | Abdullaev, B. M., & Sayfullaev, T. K. (2024). Cobalt fischer–tropsch catalyst regeneration. journal of multidisciplinary bulletin, 7(1), 105-113. |
14 | Mengliqul o’g’li, A. B. (2022). Nanoo‘lchamli katalizatorlar olish va ularni olefinlarni gidrogenlashda qo ‘llash. o'zbekistonda fanlararo innovatsiyalar va ilmiy tadqiqotlar jurnali, 2(14), 854-858. |