Sho‘rtan neft gaz boshqarmasi tasarrufidagi gazlarni nordon gazlardan absorbsion tozalash qurilmasi ASO-2 qurilmasi metildietanolamin eritmasi tarkibidagi termobarqaror tuz ionlarini olib tashlash va absorbentni sorbentlik xossalarini tiklash taqdim etilgan. Ma’lumki aminli eritmalar tarkibida termik barqaror tuzlarning ortishi, sorbentning yutish qobilyatining yo‘qotilishi, ifloslanish va korroziyaga olib keladi, shuning uchun ularni olib tashlash jarayonning yanada samarali ishlashi uchun juda muhimdir. MDEA eritmasidagi termik barqaror tuzlardan tozalashda membranali filtrlardan foydalangan holda, ularning miqdorini kamaytirishda tahlil qilingan.
Sho‘rtan neft gaz boshqarmasi tasarrufidagi gazlarni nordon gazlardan absorbsion tozalash qurilmasi ASO-2 qurilmasi metildietanolamin eritmasi tarkibidagi termobarqaror tuz ionlarini olib tashlash va absorbentni sorbentlik xossalarini tiklash taqdim etilgan. Ma’lumki aminli eritmalar tarkibida termik barqaror tuzlarning ortishi, sorbentning yutish qobilyatining yo‘qotilishi, ifloslanish va korroziyaga olib keladi, shuning uchun ularni olib tashlash jarayonning yanada samarali ishlashi uchun juda muhimdir. MDEA eritmasidagi termik barqaror tuzlardan tozalashda membranali filtrlardan foydalangan holda, ularning miqdorini kamaytirishda tahlil qilingan.
Представлена установка абсорбционной очистки газа АСО-2 от высокосернистых газов, находящаяся в распоряжении Шортанского нефте-газового управления для удаления термостабильных ионов солей, содержащихся в растворе метилдиэтаноламина, и восстановления сорбентных свойств сорбента. Известно, что увеличение термически стабильных солей в составе растворов аминов приводит к потере поглотительной способности сорбента, загрязнению и коррозии, поэтому их удаление очень важно для более эффективного проведения процесса. Проанализировано удаление термостабильных солей из раствора МДЭА с помощью мембранных фильтров на предмет снижения их количества.
The installation for absorption gas purification ASO-2 from high-sulfur gases, which is at the disposal of the Shortan oil and gas department, is presented to remove thermostable salt ions contained in the methyldiethanolamine solution and restore the sorbent properties of the sorbent. It is known that an increase in thermally stable salts in the composition of amine solutions leads to a loss of sorbent absorption capacity, contamination and corrosion, so their removal is very important for a more efficient process. The removal of thermostable salts from MDEA solution using membrane filters was analyzed to reduce their amount.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Bozorov O.N. | Professor | Iqtisodiyot va pedagogika universiteti |
2 | Anvarova I.A. | Assistent | Qarshi muhandislik-iqtisodiyot instituti |
№ | Название ссылки |
---|---|
1 | 1. Jaafari, L.; Jaffary, B.; Idem, R. Screening study for selecting new activators for activating MDEA for natural gas sweetening. Sep. Purif. Technol. 2018, 199, 320–330. [CrossRef]. |
2 | 2. Gutierrez, J.P.; Benitez, L.A.; Ruiz, E.L.A.; Erdmann, E. A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening. J. Nat. Gas Sci. Eng. 2016, 31, 800–807. [CrossRef]. |
3 | 3. Lu, H.T.; Kanehashi, S.; Scholes, C.A.; Kentish, S.E. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening. J. Membr. Sci. 2017, 539, 432–440. [CrossRef]. |
4 | 4. Qeshta, H.J.; Abuyahya, S.;Pal,P.; Banat, F.Sweeteningliquefiedpetroleumgas (LPG): Parametricsensitivity analysis using Aspen HYSYS. J. Nat. Gas Sci. Eng. 2015, 26, 1011–1017. [CrossRef]. |
5 | 5. Santaniello, A.; Golemme, G. Interfacial control in perfluoropolymer mixed matrix membranes for natural gas sweetening. J. Ind. Eng. Chem. 2018, 60, 169–176. [CrossRef]. |
6 | 6. Berrouk, A.S.; Ochieng, R. Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation. Fuel Process. Technol. 2014, 127, 20–25. [CrossRef]. |
7 | 7. Qiu, K.; Shang, J.F.; Ozturk, M.; Li, T.F.; Chen, S.K.; Zhang, L.Y.; Gu, X.H. Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening. J.Nat. GasSci. Eng. 2014, 21, 379–385. [CrossRef]. |
8 | 8. Qiu, K.; Shang, J.F.; Ozturk, M.; Li, T.F.; Chen, S.K.; Zhang, L.Y.; Gu, X.H. Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening. J.Nat. GasSci. Eng. 2014, 21, 379–385. [CrossRef]. |
9 | 9. Fouad, W.A.; Berrouk, A.S. Using mixed tertiary amines for gas sweetening energy requirement reduction. J. Nat. Gas Sci. Eng. 2013, 11, 12–17. [CrossRef]. |
10 | 10. Jassim, M.S.Sensitivity analyses and optimization of a gas sweetening plant for hydrogen sulfide and carbon dioxide capture using methyldiethanolamine solutions. J. Nat. Gas Sci. Eng. 2016, 36, 175–183. [CrossRef]. |
11 | 11. Keewan, M.; Banat, F.; Alhseinat, E.; Zain, J.; Pal, P. Effect of operating parameters and corrosion inhibitors on foaming behavior of aqueous methyldiethanolamine solutions. J. Petrol. Sci. Eng. 2018, 165. [CrossRef]. |
12 | 12. Pal, P.; AbuKashabeh, A.; Al-Asheh, S.; Banat, F. Role of aqueous methyldiethanolamine (MDEA) as solvent in natural gas sweetening unit and process contaminants with probable reaction pathway. J.Nat. GasSci. Eng. 2015, 24, 124–131. [CrossRef]. |
13 | 13. Meng, H.; Zhang, S.; Li, C.; Li, L. Removal of heat stable salts from aqueous solutions of N-methyldiethanolamine using a specially designed three-compartment configuration electrodialyzer. J. Membr. Sci. 2008, 322, 436–440. [CrossRef]. |
14 | 14. Pal, P.; AbuKashabeh, A.; Al-Asheh, S.; Banat, F. Accumulation of heat stable salts and degraded products during thermal degradation of aqueous methyldiethanolamine (MDEA) using microwave digester and high pressure reactor. J. Nat. Gas Sci. Eng. 2014, 21, 1043–1047. [CrossRef]. |
15 | 15. Verma, N.; Verma, A. Amine system problems arising from heat stable saltsand solutions to improvesystem performance. Fuel Process. Technol. 2009, 90, 483–489. [CrossRef]. |
16 | 16. Cho, J.-H.; Jeon, S.-B.; Yang, K.-S.; Seo, J.-B.; Cho, S.-W.; Oh, K.-J. Regeneration of heat stable salts-loaded anion exchange resin by a novel zirconium pentahydroxide [Zr(OH)5−] displacement technique in CO2 absorption process. Sep. Purif. Technol. 2015, 156, 465–471. [CrossRef]. |
17 | 17. Dumée,L.;Scholes,C.;Stevens,G.;Kentish,S.Purificationofaqueousaminesolventsusedinpostcombustion CO2 capture: A review. Int. J. Greenh. Gas Con. 2012, 10, 443–455. [CrossRef]. |
18 | 18. Edathil, A.A.; Pal, P.; Banat, F. Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldiethanolamine solutions. Appl. Clay Sci. 2018, 156, 213–223. [CrossRef]. |
19 | 19. Wang, T.; Hovland, J.; Jens, K.J. Amine reclaiming technologies in post-combustion carbon dioxide capture. J. Environ. Sci. 2015, 27, 276–289. [CrossRef]. |
20 | 20. Pal, P.; Banat, F.; AlShoaibi, A. Adsorptive removal of heat stable salt anions from industrial lean amine solvent using anion exchange resins from gas sweetening unit. J. Nat. Gas Sci. Eng. 2013, 15, 14–21. [CrossRef]. |
21 | 21. Hu, K.; Dickson, J.M. Nanofiltration membrane performance on fluoride removal from water. J. Membr. Sci. 2006, 279, 529–538. [CrossRef]. |
22 | 22. Ku, Y.; Chen, S.-W.; Wang, W.Y.Effectof solution composition on the removal of copper ions by nanofiltration. Sep. Purif. Technol. 2005, 43, 135–142. [CrossRef]. |
23 | 23. Pérez, L.; Escudero, I.; Arcos- Martínez, M.J.; Benito ,J.M. Application of the solution -diffusion -film model for the transfero felectroly tesan dunch arged compound sinana nofiltration membrane. J.Ind. Eng. Chem. 2017, 47, 368–374. [CrossRef]. |
24 | 24. Ryzhkov, I.I.; Minakov, A.V. Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/charge density. J. Membr. Sci. 2016, 520, 515–528. [CrossRef]. |
25 | 25. Tahaikt, M.; El Habbani, R.; Ait Haddou, A.; Achary, I.; Amor, Z.; Taky, M.; Alami, A.; Boughriba, A.; Hafsi,M.; Elmidaoui,A. Fluorideremova lfrom ground water by nano filtration. Desalination2007,212,46–53. [CrossRef]. |
26 | 26. Wei, X.; Shi, Y.; Fei, Y.; Chen, J.; Lv, B.; Chen, Y.; Zheng, H.; Shen, J.; Zhu, L. Removal of trace phthalate esters from water by thin-film composite nanofiltration hollow fiber membranes. Chem. Eng. J. 2016, 292, 382–388. [CrossRef]. |
27 | 27. Zhao, C.; Tang, C.Y.; Li, P.; Adrian, P.; Hu, G. Perfluorooctane sulfonate removal by nanofiltration membrane—The effect and interaction of magnesium ion/humic acid. J. Membr. Sci. 2016, 503, 31–41. [CrossRef]. |
28 | 28. Mänttäri, M.; Pihlajamäki, A.; Nyström, M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J. Membr. Sci. 2006, 280, 311–320. [CrossRef]. |
29 | 29. Lin, J.;Tang, C.Y.;Huang, C.;Tang, Y.P.;Ye,W.;Li,J. ;Shen, J.;vandenBroeck, R.;vanImpe,J.; Volodin ,A.;etal. A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes. J. Membr. Sci. 2016, 501, 1–14. [CrossRef]. |
30 | 30. Ghorbani, A.; Bayati, B.; Kikhavani, T. Modelling transport in an amine solution through a nanofiltration membrane. Braz. J. Chem. Eng. 2019, 36, 1667–1677. [CrossRef]. |
31 | 31. Kelewou, H.; Lhassani, A.; Merzouki, M.; Drogui, P.; Sellamuthu, B. Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modeling. Desalination 2011, 277, 106–112. [CrossRef]. |