36

Ushbu ishda vaznli Lebeg fazosida berilgan yadrosi o‘zgarmas bo‘lgan Hardi-Volterra operatori normasi uchun aniq qiymat keltirilgan.

  • Ссылка в интернете https://journal.uzfi.uz
  • DOI
  • Дата создание в систему UzSCI 20-08-2024
  • Количество прочтений 0
  • Дата публикации 12-08-2024
  • Язык статьиO'zbek
  • Страницы151-157
Ўзбек

Ushbu ishda vaznli Lebeg fazosida berilgan yadrosi o‘zgarmas bo‘lgan Hardi-Volterra operatori normasi uchun aniq qiymat keltirilgan.

Русский

 В данной работе представлено точное значение нормы оператора Харди-Вольтерра константного ядра, заданного в весовом пространстве Лебега.

English

In this paper the exact value is given for the norm of the Hardy – Volterra operator of the constant kernel in the weighted Lebesgue space.

Имя автора Должность Наименование организации
1 Turaqulov D.T. doktorant Samarqand davlat universiteti
2 Ismatov A.N. assistent Jizzax davlat pedagogika universiteti
3 Po'latov P.S. assistent Oʻzbekiston-Finlandiya pedagogika instituti
Название ссылки
1 1. A. Kufner, L. Maligranda and L-E. Persson. The Hardi Inequality. About its History and Some Related Results. Vydavatelský Servis, Plzen, 2007.
2 2. A. Kufner and L.-E. Persson. Weighted inequalities of Hardi type. World Scientific, New Jersey-London-Singapore-Hong Kong, 2003.
3 3. G.H. Hardi, J.E. Littlewood, G. Po´lya. Inequalities. Cambridge Univ. Press, 324 (1952).
4 4. K. Kuliev, G. Kulieva, M. Eshimova. New equivalent conditions for Hardi-type inequality with Oinarov kernel, Scientific Journal of SamSU, 2022-yil, №1 (131).
5 5. A. Kufner, K. Kuliev, G. Kulieva, M. Eshimova. New equivalent conditions for Hardi-type Inequalities. Mathematica Bohemica, Published online on March 3, 2023 as doi: 10.21136/MB.2023.0088-22.
6 6. K. Kuliev, G. Kulieva, M. Eshimova. On estimates for norm of some integral operators in weighted Lebesgue spaces, Mathematical Inequalities & Applications Volume 26, Number 1 (2023), p.27–37. doi:10.7153/mia-2023-26-03.
7 7. K.D. Kuliev. On estimates for norms of some integral operators with Oinarov's kernel, Eurasian Mathematical Journal 13(3), p.67-81.
8 8. K.D. Kuliev. Nonoscillation criteria for half-linear fourth order differential equations, Uzbek Mathematical Journal, 2021, Volume 65, Issue 2, pp.83-93. doi: 10.29229/uzmj.2021-2-7
9 9. A. Kufner, K. Kuliev, R. Oinarov: Some criteria for boundedness and compactness of the Hardi operator with some special kernels. J. Inequal. Appl. 2013 (2013), Article ID 310, 15 pages.
10 10. A. Kufner, K. Kuliev, L.-E. Persson: Some higher order Hardi inequalities. J. Inequal. Appl. 2012 (2012), Article ID 69, 14 pages.
В ожидании