Ushbu ishda vaznli Lebeg fazosida berilgan yadrosi o‘zgarmas bo‘lgan Hardi-Volterra operatori normasi uchun aniq qiymat keltirilgan.
Ushbu ishda vaznli Lebeg fazosida berilgan yadrosi o‘zgarmas bo‘lgan Hardi-Volterra operatori normasi uchun aniq qiymat keltirilgan.
В данной работе представлено точное значение нормы оператора Харди-Вольтерра константного ядра, заданного в весовом пространстве Лебега.
In this paper the exact value is given for the norm of the Hardy – Volterra operator of the constant kernel in the weighted Lebesgue space.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Turaqulov D.T. | doktorant | Samarqand davlat universiteti |
2 | Ismatov A.N. | assistent | Jizzax davlat pedagogika universiteti |
3 | Po'latov P.S. | assistent | Oʻzbekiston-Finlandiya pedagogika instituti |
№ | Название ссылки |
---|---|
1 | 1. A. Kufner, L. Maligranda and L-E. Persson. The Hardi Inequality. About its History and Some Related Results. Vydavatelský Servis, Plzen, 2007. |
2 | 2. A. Kufner and L.-E. Persson. Weighted inequalities of Hardi type. World Scientific, New Jersey-London-Singapore-Hong Kong, 2003. |
3 | 3. G.H. Hardi, J.E. Littlewood, G. Po´lya. Inequalities. Cambridge Univ. Press, 324 (1952). |
4 | 4. K. Kuliev, G. Kulieva, M. Eshimova. New equivalent conditions for Hardi-type inequality with Oinarov kernel, Scientific Journal of SamSU, 2022-yil, №1 (131). |
5 | 5. A. Kufner, K. Kuliev, G. Kulieva, M. Eshimova. New equivalent conditions for Hardi-type Inequalities. Mathematica Bohemica, Published online on March 3, 2023 as doi: 10.21136/MB.2023.0088-22. |
6 | 6. K. Kuliev, G. Kulieva, M. Eshimova. On estimates for norm of some integral operators in weighted Lebesgue spaces, Mathematical Inequalities & Applications Volume 26, Number 1 (2023), p.27–37. doi:10.7153/mia-2023-26-03. |
7 | 7. K.D. Kuliev. On estimates for norms of some integral operators with Oinarov's kernel, Eurasian Mathematical Journal 13(3), p.67-81. |
8 | 8. K.D. Kuliev. Nonoscillation criteria for half-linear fourth order differential equations, Uzbek Mathematical Journal, 2021, Volume 65, Issue 2, pp.83-93. doi: 10.29229/uzmj.2021-2-7 |
9 | 9. A. Kufner, K. Kuliev, R. Oinarov: Some criteria for boundedness and compactness of the Hardi operator with some special kernels. J. Inequal. Appl. 2013 (2013), Article ID 310, 15 pages. |
10 | 10. A. Kufner, K. Kuliev, L.-E. Persson: Some higher order Hardi inequalities. J. Inequal. Appl. 2012 (2012), Article ID 69, 14 pages. |