43

Bul maqalada Nókis rayonı mısalında awıl xojalıǵı jerleriniń ekologiyalıq jaǵdayın hár tárepleme bahalawǵa járdem beretuǵın algoritmler hám programmalıq kompleksler kórip shıǵıladı. Ekologiyalıq jaǵdaydı bahalawdıń ámeldegi usılları kórip shıǵıladı hám maǵlıwmatlardı nátiyjeli analiz qılıw ushın qanday algoritmler hám programmalıq támiynat komplekslerinen paydalanıw múmkinligin kórip shıǵıladı

  • Количество прочтений 43
  • Дата публикации 01-05-2024
  • Язык статьиQoraqalpoq
  • Страницы36-40
English

Bul maqalada Nókis rayonı mısalında awıl xojalıǵı jerleriniń ekologiyalıq jaǵdayın hár tárepleme bahalawǵa járdem beretuǵın algoritmler hám programmalıq kompleksler kórip shıǵıladı. Ekologiyalıq jaǵdaydı bahalawdıń ámeldegi usılları kórip shıǵıladı hám maǵlıwmatlardı nátiyjeli analiz qılıw ushın qanday algoritmler hám programmalıq támiynat komplekslerinen paydalanıw múmkinligin kórip shıǵıladı

English

This article will consider algorithms and software packages that help to conduct a comprehensive assessment of the ecological state of agricultural land on the example of the Nukus district. The article presents an overview of existing methods for assessing the environmental condition and consider which algorithms and software packages that can be used for effective data analysis

Русский

В данной статье будут рассмотрены алгоритмы и программные комплексы, помогающие проводить комплексную оценку экологического состояния сельскохозяйственных угодий на примере Нукусского района. Перейдем к обзору существующих методов оценки экологического состояния и рассмотрим, какие алгоритмы и программные комплексы могут быть использованы для эффективного анализа данных

Имя автора Должность Наименование организации
1 Qaypov A.S. menedjer Nókisrayonı hákimiliginde sanlı ekonomikanı engiziwde joybarlar
Название ссылки
1 1.www.lex.uz/ O‘zbekiston Respublikasi Prezidentining 2021-yil 26-fevraldagi PQ-5009-son qarori2.Константин Васильев. Программирование на языке Pythonдля геологов и географов. -М.: ДМК Пресс, 2020.3.Елена Иванова. Современные методы биоиндикации. -СПб.: Издательство Наука, 2016.4.Луничкин, А. А., Нагорный, А. И., Еремченко, А. В., & Тригуб, Л. Я. (2020). Разработка алгоритма оценки экологического состояния сельскохозяйственных угодий на основе индекса устойчивого развития. Экология и промышленность России, 24(9), 41-485.Потапов, А. С., Доля, С., Баранов, В. А., & Каюков, А. О. (2018). Методы и алгоритмы анализа данных мониторинга земель сельскохозяйственного использования. Успехи современной науки и образования, 7, 223-230.6.Ballari, D., Melia, J., & Khandelwal, A. (2021). Using Sentinel-1 Synthetic Aperture Radar (SAR) data for land use/land cover mapping. Geosciences, 11(7), 305.7.Das, R., Pradhan, B., & Lee, S. (2020). Synergistic use of UAV, optical and SAR remote sensing data and machine learning techniques for land use/land cover mapping: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 204-221.8.Gao, Y., Guo, H., Zhou, Y., & Zhang, X. (2021). A novel algorithm for agricultural land zoning based on multi-source data. IEEE Access, 9, 59467-59477.9.Kussul, N., Kolotii, A., Shelestov, A., Lavreniuk, M., Myshenyk, Y., & Skakun, S. (2018). Development of agricultural land monitoring algorithms using Earth observation data. Journal of automation and information sciences, 50(3), 61-73.10.Rich, K., Persello, C., Tait, N., & Coomes, D. (2020). Mapping deforestation and forest degradation in tropical regions: A framework for monitoring using satellite Earth observation data. Methods in Ecology and Evolution, 11(5), 573-587.11.Wu, B., Zhang, L., & Liu, Y. (2021). A multi-temporal random forest approach for land use classification using multi-source data. Remote Sensing, 13(4), 663.
В ожидании