The increasing prevalence of industrial pollutants, particularly synthetic dyes, in water bodies has necessitated the development of efficient and sustainable treatment methods. This review comprehensively examines the use of gliding arc plasma technology, coupled with various catalysts, for the degradation of persistent organic pollutants such as azo dyes, acid dyes, and other synthetic colorants. The synergistic effects of combining plasma with different catalysts are analyzed, highlighting their impact on degradation efficiency and reaction kinetics. Key findings from recent studies are summarized, focusing on the degradation rates, catalyst performance, and experimental conditions. The review also discusses the underlying mechanisms of plasma-catalyst interactions, offering insights into the role of different catalysts in enhancing pollutant breakdown. Furthermore, the article identifies current challenges and proposes future research directions to optimize gliding arc plasma technology for large-scale environmental applications. This work underscores the potential of plasma-assisted catalysis as a promising approach for water treatment, contributing to the advancement of sustainable and effective remediation technologies.
The increasing prevalence of industrial pollutants, particularly synthetic dyes, in water bodies has necessitated the development of efficient and sustainable treatment methods. This review comprehensively examines the use of gliding arc plasma technology, coupled with various catalysts, for the degradation of persistent organic pollutants such as azo dyes, acid dyes, and other synthetic colorants. The synergistic effects of combining plasma with different catalysts are analyzed, highlighting their impact on degradation efficiency and reaction kinetics. Key findings from recent studies are summarized, focusing on the degradation rates, catalyst performance, and experimental conditions. The review also discusses the underlying mechanisms of plasma-catalyst interactions, offering insights into the role of different catalysts in enhancing pollutant breakdown. Furthermore, the article identifies current challenges and proposes future research directions to optimize gliding arc plasma technology for large-scale environmental applications. This work underscores the potential of plasma-assisted catalysis as a promising approach for water treatment, contributing to the advancement of sustainable and effective remediation technologies.
Увеличивающаяся распространенность промышленных загрязнителей, в частности синтетических красителей, в водоемах требует разработки эффективных и устойчивых методов очистки. В этом обзоре всесторонне рассматривается использование технологии скользящей дуговой плазмы в сочетании с различными катализаторами для деградации стойких органических загрязнителей, таких как азокрасители, кислотные красители и другие синтетические красители. Проанализированы синергетические эффекты комбинации плазмы с различными катализаторами, подчеркивающие их влияние на эффективность деградации и кинетику реакции. Ключевые результаты недавних исследований обобщены с акцентом на скорость деградации, производительность катализаторов и экспериментальные условия. Обзор также обсуждает основные механизмы взаимодействия плазмы и катализаторов, предоставляя информацию о роли различных катализаторов в улучшении разрушения загрязнителей. Кроме того, статья определяет текущие проблемы и предлагает направления для будущих исследований с целью оптимизации технологии скользящей дуговой плазмы для применения в крупных масштабах в области охраны окружающей среды. Это исследование подчеркивает потенциал катализируемого плазмой подхода как перспективного метода для очистки воды, способствуя развитию устойчивых и эффективных технологий ремедиации.
Suv havzalarida sanoat ifloslantiruvchilari, xususan, sintetik bo‘yoqlarning keng tarqalishi samarali va barqaror tozalash usullarini ishlab chiqishni talab qilmoqda. Ushbu maqolada gliding arc plazma texnologiyasidan turli katalizatorlar bilan birgalikda foydalanishni, azo bo‘yoqlar, kislota bo‘yoqlari va boshqa sintetik rang beruvchi moddalarga o‘xshash barqaror organik ifloslantiruvchilarni parchalash uchun qo‘llanilishini har tomonlama o‘rganiladi. Plazma va turli katalizatorlarning kombinatsiyasining sinergik ta’siri tahlil qilinib, ularning parchalanish samaradorligi va reaksiya kinetikasiga ta’siri ko‘rsatib beriladi. So‘nggi tadqiqotlarning asosiy natijalari umumlashtirilib, asosan degradatsiya tezligi, katalizatorlarning samaradorligi va eksperimental sharoitlarga e’tibor qaratilgan. Maqolada plazma va katalizatorlar o‘zaro ta’sirining asosiy mexanizmlarini ham muhokama qilinadi va turli katalizatorlarning ifloslantiruvchi moddalarni parchalanishini kuchaytirishdagi rolini tushuntiradi. Shuningdek, maqolada hozirgi muammolar aniqlanib, gliding arc plazma texnologiyasini keng miqyosda atrof-muhitga oid qo'llanmalar uchun optimallashtirishga qaratilgan kelajakdagi tadqiqot yo'nalishlari taklif etadi. Ushbu ish plazma yordamida katalizni suvni tozalash uchun istiqbolli yondashuv sifatida ko'rsatib, barqaror va samarali reabilitatsiya texnologiyalarini rivojlantirishga hissa qo'shadi.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Shukurov O.N. | O'zbekiston Materialshunoslik Instituti | O'zbekiston Materialshunoslik Instituti |
2 | Razzokov J.. | Direktor | Milliy Tadqiqot Universiteti qoshidagi Fundamental va Amaliy Tadqiqotlar Instituti |
3 | Qodirov A.. | tadqiqotchi | Milliy Tadqiqot Universiteti qoshidagi Fundamental va Amaliy Tadqiqotlar Instituti |
4 | Tojiyev S.. | tadqiqotchi | O'zbekiston Materialshunoslik Instituti |
№ | Название ссылки |
---|---|
1 | 1. Dutta, P., et al., Effects of textile dyeing effluent on the environment and its treatment: A review. Eng. Appl. Sci. Lett, 2022. 5(1): p. 1-1. |
2 | 2. Rasheed, T., et al., Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment international, 2019. 122: p. 52-66. |
3 | 3. Dobslaw, C. and B. Glocker, Plasma technology and its relevance in waste air and waste gas treatment. Sustainability, 2020. 12(21): p. 8981. |
4 | 4. Russo, M., et al., Non-thermal plasma coupled with catalyst for the degradation of water pollutants: A review. Catalysts, 2020. 10(12): p. 1438. |
5 | 5. Yusuf, A., et al., Hazardous and emerging contaminants removal from water by plasma-based treatment: A review of recent advances. Chemical Engineering Journal Advances, 2023. 14: p. 100443. |
6 | 6. Boulos, M.I., Thermal plasma processing. IEEE transactions on Plasma Science, 1991. 19(6): p. 1078-1089. |
7 | 7. Lu, X., et al., Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016. 630: p. 1-84. |
8 | 8. Fridman, A., et al., Gliding arc gas discharge. Progress in energy and combustion science, 1999. 25(2): p. 211-231. |
9 | 9. Tian, D., et al., Progress of organic wastewater degradation by atmospheric pressure gliding arc plasma technology: A review. AIP Advances, 2024. 14(3). |
10 | 10. Li, Z., et al., Characterization of a Gliding Arc Igniter from an Equilibrium Stage to a Non–Equilibrium Stage Using a Coupled 3D–0D Approach. Processes, 2023. 11(3): p. 873. |
11 | 11. Mumtaz, S., et al., Review on the biomedical and environmental applications of nonthermal plasma. Catalysts, 2023. 13(4): p. 685. |
12 | 12. Bradu, C., et al., Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture. Journal of Physics D: Applied Physics, 2020. 53(22): p. 223001. |
13 | 13. Saïm, N., et al., New prototype for the treatment of falling film liquid effluents by gliding arc discharge part II: Plasmacatalytic activity of TiO2 thin film deposited by magnetron sputterin. Chemical Engineering and Processing: Process Intensification, 2015. 98: p. 32-40. |
14 | 14. Tarkwa, J.-B., et al., Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma. Applied Catalysis B: Environmental, 2019. 246: p. 211-220. |
15 | 15. Suzie, V.A., et al., Photocatalytic performance of N–TiO2@ SiO2 composite obtained under gliding arc plasma processing at atmospheric pressure. Results in Engineering, 2022. 15: p. 100516. |
16 | 16. Chang-ming, D., et al., Degradation of acid orange 7 solution by air-liquid gliding arc discharge in combination with TiO2 catalyst. Journal of Advanced Oxidation Technologies, 2011. 14(1): p. 17-22. |
17 | 17. Djowe, A.T., et al., Discoloration of azoïc Thiazol Yellow dye by gliding arc plasma process in the presence of TiO2 catalyst. |
18 | 18. Du, C., et al., Degradation and discoloration of textile dyes using gliding arc plasma combined with fenton catalysis. Plasma Remediation Technology for Environmental Protection, 2017: p. 21-39. |
19 | 19. Ghezzar, M., et al., Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2. Applied Catalysis B: Environmental, 2007. 72(3-4): p. 304-313. |
20 | 20. Haddou, N., et al., Competitive Contribution of Catalyst and Adsorption Roles of TiO2 on the Degradation of AO7 Dye During Plasma Treatment. Plasma Science and Technology, 2013. 15(9): p. 915. |