26

Ushbu maqolada 30 tonnalik elektrda po‘lat eritish pechida (DSP-30) yuz beradigan murakkab va noaniq texnologik jarayonlarni boshqarishda fuzzy mantiq tizimining qo‘llanilishi tahlil qilinadi. Tadqiqotlar natijasida aniqlandiki, eritish jarayonining 80 foizi (42 daqiqa) elektr yoy yordamida amalga oshiriladi. An’anaviy boshqaruv tizimlarida elektr yoy toki 17 kA dan keskin oshib yoki kamayib ketishi natijasida ishlab chiqarish to‘xtab qolish holatlari aniqlangan. Shu sababli, maqolada Fuzzy tizimi orqali elektr yoy toki, kuchlanishning Gauss funksiyalari asosida fuzzifikatsiya qilingan. Elektr yoy tokining 17–38 kA, kuchlanishning -6% dan +8% gacha bo‘lgan kritik chegaralari asosida lingvistik toifalar ishlab chiqilgan. Mamdani algoritmi asosida 17–20 daqiqalik eritish davrida elektrodlarning optimal boshqaruvi ta'minlanib, energiya tejamkorligi, elektrod sarfi kamayishi va mahsulot unumdorligi oshishi kabi natijalarga erishilgan. Tadqiqot natijalari Fuzzy boshqaruv tizimining an’anaviy tizimlarga integratsiya qilinishi orqali po‘lat eritish texnologik jarayonining samarali boshqaruvni ta’minlashi asosida texnologik jarayon intensivligini oshirishiq aniqlangan.

  • Количество прочтений 26
  • Дата публикации 28-09-2025
  • Язык статьиO'zbek
  • Страницы16-21
English

This article analyzes the application of a fuzzy logic system for controlling complex and uncertain technological processes occurring in a 30-ton Electric Arc Furnace (EAF-30). Research findings show that 80% of the melting process (42 minutes) is carried out using an electric arc. In traditional control systems, rapid fluctuations in arc current exceeding or falling below 17 kA have been identified as a cause of process interruptions. Therefore, this study proposes the fuzzification of arc current, voltage, and arc length using Gaussian membership functions. Based on critical thresholds—arc current in the range of 17–38 kA and voltage from -6% to +8%—linguistic variables were developed. Using the Mamdani algorithm, optimal electrode control during the 17–20-minute melting phase ensures improved energy efficiency, reduced electrode consumption, and increased product output. The research results demonstrate that integrating Fuzzy control into traditional systems is an effective approach for intensifying the steelmaking technological process.

Русский

В данной статье проанализировано применение системы нечеткой логики для управления сложными и неопределенными технологическими процессами, происходящими в 30-тонной электродуговой сталеплавильной печи (ДСП-30). Результаты исследований показали, что 80% процесса плавки (42 минуты) осуществляется с использованием электрической дуги. В традиционных системах управления выявлены перебои в процессе, вызванные резкими колебаниями дугового тока выше или ниже порогового значения 17 кА. В связи с этим в работе предложена фаззификация дугового тока, напряжения и длины дуги на основе гауссовских функций принадлежности. Разработаны лингвистические переменные на основе критических границ: ток дуги в диапазоне 17–38 кА и напряжение от -6% до +8%. С использованием алгоритма Мамдани обеспечено оптимальное управление движением электродов в течение 17–20 минутной фазы плавки, что позволило повысить энергетическую эффективность, снизить расход электродов и увеличить производительность. Результаты исследования подтверждают, что интеграция нечеткой логики в традиционные системы управления является эффективным решением для интенсификации сталеплавильного технологического процесса.

Ўзбек

Ushbu maqolada 30 tonnalik elektrda po‘lat eritish pechida (DSP-30) yuz beradigan murakkab va noaniq texnologik jarayonlarni boshqarishda fuzzy mantiq tizimining qo‘llanilishi tahlil qilinadi. Tadqiqotlar natijasida aniqlandiki, eritish jarayonining 80 foizi (42 daqiqa) elektr yoy yordamida amalga oshiriladi. An’anaviy boshqaruv tizimlarida elektr yoy toki 17 kA dan keskin oshib yoki kamayib ketishi natijasida ishlab chiqarish to‘xtab qolish holatlari aniqlangan. Shu sababli, maqolada Fuzzy tizimi orqali elektr yoy toki, kuchlanishning Gauss funksiyalari asosida fuzzifikatsiya qilingan. Elektr yoy tokining 17–38 kA, kuchlanishning -6% dan +8% gacha bo‘lgan kritik chegaralari asosida lingvistik toifalar ishlab chiqilgan. Mamdani algoritmi asosida 17–20 daqiqalik eritish davrida elektrodlarning optimal boshqaruvi ta'minlanib, energiya tejamkorligi, elektrod sarfi kamayishi va mahsulot unumdorligi oshishi kabi natijalarga erishilgan. Tadqiqot natijalari Fuzzy boshqaruv tizimining an’anaviy tizimlarga integratsiya qilinishi orqali po‘lat eritish texnologik jarayonining samarali boshqaruvni ta’minlashi asosida texnologik jarayon intensivligini oshirishiq aniqlangan.

Имя автора Должность Наименование организации
1 Raxmonov I.U. Professor Tashkent State Technical University
2 Qorjobova M.F. PhD Tashkent State Technical University
Название ссылки
1 1. Paranchuk Y., Shabatura Y., Kuznyetsov O. The electrodes positioning control system for the electric arc furnace based on fuzzy logic. In: Proceedings of the IEEE International Conference on Modern Electrical and Energy Systems, Kremenchuk, Ukraine, 21–24 September 2021, pp. 1–5.
2 2. Moghadasian M., Al-Nasser E. Modelling and control of electrode system for an electric arc furnace. In: 2nd International Conference on Research in Science, Engineering and Technology (ICRSET-2014), Dubai, UAE, March 21–22, 2014. Available at: http://dx.doi.org/10.15242/IIE.E0314558.
3 3. Rakhmonov I.U., Ushakov V.Ya., Najimova A.M., Obidov K.K., Suleymanov S.R. Mathematical modeling for minimizing electricity consumption in industrial enterprises with continuous production. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2024, vol. 335, no. 4, pp. 43–51. (In Russ.) DOI: 10.18799/24131830/2024/4/4423
4 4. Wang L.-X., Mendel J.M. Back-propagation fuzzy system as nonlinear dynamic system identifiers. In: Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, 8–12 March 1992, pp. 1409–1418
5 5. Rakhmonov I.U., Ushakov V.Ya., Niyozov N.N., Kurbonov N.N. Forecasting electricity consumption by LSTM neural network. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2023, vol. 334, no. 12, pp. 125–133. (In Russ.) DOI: 10.18799/24131830/2023/12/4407 Maslov D.V. Study of mechanical processes during electrode impact with scrap. In: Science. Technologies. Innovations: Proceedings of the All-Russian Scientific Conference of Young Scientists, in 10 parts, part 6. Novosibirsk: NSTU Publishing House, 2013, pp. 18–22. (In Russ.).
6 6. Napoles-Baez Y., Gonzalez-Yero G., Martínez R., Valeriano Y., Nuñez-Alvarez J.R., Llosas-Albuerne Y. Modeling and control of the hydraulic actuator in a ladle furnace. Heliyon, 2022, vol. 8, e11857. DOI: https://doi.org/10.1016/j.heliyon.2022.e11857
7 7. Nikolaev A.A., Tulupov P.G., Astashova G.V. The comparative analysis of electrode control systems of electric arc furnaces and ladle furnaces. In: 2nd International Conference on Industrial Engineering, Applications, and Manufacturing. ICIEAM-2016, 2016, pp. 1–7.
8 8. Liu Y.-J., Chang G.W., Hong R.-C. Curve-fitting-based method for modeling voltage-current characteristic of an AC electric arc furnace. Electric Power Systems Research, 2010, vol. 80, no. 7, pp. 807–814.
9 9. Ghiormez L., Prostean O. Electric arc current control for an electric arc furnace based on fuzzy logic. In: Proceedings of the IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 21–23 May 2015, pp. 359–364.
10 10. Maslov D.V. Determination of key parameters affecting the integrity of electrode columns in arc furnaces. Elektrotekhnika, 2013, no. 8, pp. 43–47. (In Russ.)
В ожидании