30

Mis metaliga talabning oshishi, qayta ishlanishi qulay bo‘lgan sulfidli mis rudalari zaxiralarining kamayishi oksidlangan, aralash tarkibdagi, balansdan tashqari mis rudalarini qayta ishlab kerakli komponentlarni ajratib olishga zarurat uyg‘otmoqda. Lekin oksidlangan mis rudalarining murakkab mineralogik tarkibi, gidrofillik xususiyati qayta ishlashda qiyinchiliklar keltirib chiqaradi. Mazkur maqolada oksidlangan mis rudalari tarkibidagi mis minerallarining fizik-kimyoviy xususiyatlari, qayta ishlash texnologiyasini tanlashdagi ahamiyatlari, flotatsiyalanish qobilyatini oshirishda qo‘llanilishi mumkin bo‘lgan reagentlar va gidrometallurgik qayta ishlash usullari tahlil qilingan.

  • Количество прочтений 30
  • Дата публикации 28-09-2025
  • Язык статьиO'zbek
  • Страницы34-41
Ўзбек

Mis metaliga talabning oshishi, qayta ishlanishi qulay bo‘lgan sulfidli mis rudalari zaxiralarining kamayishi oksidlangan, aralash tarkibdagi, balansdan tashqari mis rudalarini qayta ishlab kerakli komponentlarni ajratib olishga zarurat uyg‘otmoqda. Lekin oksidlangan mis rudalarining murakkab mineralogik tarkibi, gidrofillik xususiyati qayta ishlashda qiyinchiliklar keltirib chiqaradi. Mazkur maqolada oksidlangan mis rudalari tarkibidagi mis minerallarining fizik-kimyoviy xususiyatlari, qayta ishlash texnologiyasini tanlashdagi ahamiyatlari, flotatsiyalanish qobilyatini oshirishda qo‘llanilishi mumkin bo‘lgan reagentlar va gidrometallurgik qayta ishlash usullari tahlil qilingan.

Русский

Рост спроса на медь и сокращение запасов сульфидных медных руд, удобных для переработки, вызывают необходимость переработки окисленных, смешанных по составу и забалансовых медных руд с целью извлечения необходимых компонентов. Однако сложный минералогический состав окисленных медных руд и их гидрофильные свойства создают трудности при переработке. В данной статье проанализированы физико-химические свойства медных минералов, содержащихся в окисленных рудах, их значение при выборе технологии переработки, возможные реагенты для повышения флотационной способности, а также гидрометаллургические методы переработки.

English

The growing demand for copper and the depletion of easily processable sulfide copper ore reserves necessitate the processing of oxidized, compositionally mixed, and off-balance copper ores to extract valuable components. However, the complex mineralogical composition of oxidized copper ores and their hydrophilic properties present challenges in processing. This article analyzes the physicochemical properties of copper minerals contained in oxidized ores, their importance in selecting appropriate processing technologies, potential reagents for improving flotation performance, and hydrometallurgical processing methods.

Название ссылки
1 1. International Copper Study Group. (2024). The world copper factbook 2024 (pp. 5–6).
2 2. London Metal Exchange. (n.d.). LME Copper. Retrieved from https://www.lme.com/en/Metals/Non-ferrous/LME-Copper#Summary
3 3. Yagudin, R. A., Yagudina, Yu. R., & Emelyanenko, E. A. (2014). Mis-kolchedan rudalarini qayta ishlashning texnologik yechimlari. Gornyi Zhurnal, (7), 30–33. https://www.rudmet.ru/journal/1330/article/22746/
4 4. Ryl’nikova, M. V., Emelyanenko, E. A., Gorbatova, E. A., & Yagudina, Yu. R. (2016). Uraldagi mis-kolchedan konlari rudalarini qayta ishlash texnologiyasini takomillashtirish. Gornyi Zhurnal, (12). https://doi.org/10.17580/gzh.2016.12.14
5 5. Boduen, A. Ya. (2023). Past navli va sifatsiz mis konsentratlarini qayta ishlashning gidrometallurgik usullari. Gornyi Zhurnal, (10). https://doi.org/10.17580/gzh.2023.10.05
6 6. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.
7 7. Emmanuel, B., Ajayi, J. A., & Makhatha, E. (2019). Investigation of copper recovery rate from copper oxide ore occurring as coarse grains locked in a porphyritic fine grain alumina and silica. Energy Procedia, 157, 972–976.
8 8. Mitrofanov, S. I., Meshaninova, V. I., Kurochkina, A. V., Maiorov, A. D., & Shcherbakov, V. A. (1984). Kombinirovannye protsessy pererabotki rud tsvetnykh metallov. Moskva: Nedra.
9 9. Sanakulov, K. S. (2009). Perspektivy pererabotki okislennykh mednykh rud mestorozhdeniya Kal’makyr. Gornyi Vestnik Uzbekistana, (3), 47–49.
10 10. Elchiyeva, M. D., Xoliqulov, D. B., & Boltayev, O. N. (2024). “Olmaliq KMK” AJ sharoitida oksidlangan mis rudalarini qayta ishlash imkoniyatlari. International Journal of Advanced Technology and Natural Sciences. https://doi.org/10.24412/2181-144X-2024-1-80-87
11 11. Mao, Y. B., Deng, J. S., Wen, S. M., & Fang, J. J. (2015). Reaction kinetics of malachite in ammonium carbamate solution. Chemical Papers, 69(9), 1187–1192.
12 12. Horlick, J. M., Cooper, W. C., & Clark, A. H. (1981). Aspects of the mineralogy and hydrometallurgy of chrysocolla, with special reference to the Cuajone, Peru, ores. International Journal of Mineral Processing, 8(1), 49–59.
13 13. Habbache, N., Alane, N., Djerad, S., & Tifouti, L. (2009). Leaching of copper oxide with different acid solutions. Chemical Engineering Journal, 152(2–3), 503–508.
14 14. Zhang, Q., Wen, S. M., Feng, Q. C., & Wang, H. (2022). Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation. International Journal of Minerals, Metallurgy and Materials, 29(6), 1150–1160.
15 15. Baranov, V. F. (2020). Sulfidli va aralash tarkibli mis rudalarini qayta ishlovchi xorijiy boyitish fabrikalarining ish tajribasini ko‘rib chiqish. Obogashchenie Rud, (3). https://doi.org/10.17580/or.2020.03.08
16 16. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026.
17 17. Feng, Q., Yang, W., Wen, S., Wang, H., Zhao, W., & Han, G. (2022). Flotation of copper oxide minerals: A review. International Journal of Mining Science and Technology, 32(6), 1351–1364. https://doi.org/10.1016/j.ijmst.2022.08.008
18 18. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.
19 19. Jiang, D., Lan, J., Zhao, W., Zhang, Z., & Lan, Y. (2017). Activation of chrysocolla flotation by organic chelating agents. RSC Advances, 7(57), 35608–35612.
20 20. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026.
21 21. Yang, X. L., Liu, S., Liu, G. Y., & Zhong, H. (2017). A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. Journal of Industrial and Engineering Chemistry, 46, 404–415.
22 22. Deng, T., & Chen, J. Y. (1991). Treatment of oxidized copper ores with emphasis on refractory ores. Mineral Processing and Extractive Metallurgy Review, 7(3–4), 175–207.
23 23. Choi, J., Choi, S. Q., Park, K., Han, Y., & Kim, H. (2016). Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector. International Journal of Mineral Processing, 146, 38–45.
24 24. Lee, K., Archibald, D., McLean, J., & Reuter, M. A. (2009). Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals Engineering, 22(4), 395–401.
25 25. Bulatovic, S. M. (2010). Flotation of oxide copper and copper cobalt ores. In Handbook of Flotation Reagents: Chemistry, Theory and Practice (pp. 47–65). Amsterdam: Elsevier.
26 26. Marion, C., Jordens, A., Li, R. H., Rudolph, M., & Waters, K. E. (2017). An evaluation of hydroxamate collectors for malachite flotation. Separation and Purification Technology, 183, 258–269.
27 27. Han, G., Wen, S. M., Wang, H., & Feng, Q. C. (2021). Identification of copper-sulfide species on the cuprite surface and its role in sulfidization flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126854.
28 28. Gu, G., Zhu, R., & Chen, Z. (2019). Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore. Physicochemical Problems of Mineral Processing, 55(1), 58–69.
29 29. Castro, S., Soto, H., Goldfarb, J., & Laskowski, J. (1974). Sulphidizing reactions in the flotation of oxidized copper minerals II: Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite. International Journal of Mineral Processing, 1(2), 151–161.
30 30. Deng, R. D., Hu, Y., Ku, J. G., Zuo, W. R., & Yang, Z. G. (2017). Adsorption of Fe(III) on smithsonite surfaces and implications for flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 308–315.
31 31. Bekturganov, N., Katkeeva, G., Oskembekov, I., & Akubaeva, M. (2016). Sulfidization application during the processing of oxidized copper ores of Udokan deposit. Tsvetnye Metally, 22–27. https://doi.org/10.17580/tsm.2016.09.02
32 32. Zhou, R., & Chander, S. (1993). Kinetics of sulfidization of malachite in hydrosulfide and tetrasulfide solutions. International Journal of Mineral Processing, 37(3–4), 257–272.
33 33. Park, K., Park, S., Choi, J., Kim, G., Tong, M. P., & Kim, H. (2016). Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector. Separation and Purification Technology, 168, 1–7.
34 34. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper–cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023–1026. https://www.sciencedirect.com/science/article/abs/pii/S0892687503002632
35 35. Atrafi, A., Hodjatoleslami, H., Noaparast, M., Shafaei, Z., & Ghorbani, A. (2012). Implementation of flotation and gravity separation, to process Changarzeh sulfide-oxide lead ore. Journal of Mining and Environment, 3, 79–87.
36 36. Feng, Q. C., Zhao, W. J., Wen, S. M., & Cao, Q. B. (2017). Copper sulfide species formed on malachite surfaces in relation to flotation. Journal of Industrial and Engineering Chemistry, 48, 125–132.
37 37. Iwasaki, I., & Cooke, S. R. B. (1964). Decomposition mechanism of xanthate in acid solution as determined by a spectrophotometric method. Journal of Physical Chemistry, 68(7), 2031–2033.
38 38. Han, G., Wen, S. M., Wang, H., & Feng, Q. C. (2021). Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant. International Journal of Mining Science and Technology, 31(6), 1117–1128.
39 39. Qiu, X. Y., Li, S. P., Deng, H. B., & He, X. J. (2007). Study of heating surface sulfurized flotation dynamics of smithsonite. Nonferrous Metals Mineral Processing, 1, 24–26.
40 40. Jiang, D., Lan, J., Zhao, W., Zhang, Z., & Lan, Y. (2017). Activation of chrysocolla flotation by organic chelating agents. RSC Advances, 7(57), 35608–35612.
41 41. Xu, X., & Liu, B. (1993). The properties of the flotation of chrysocolla using organic chelating reagents as activators. Journal of Kunming University of Science and Technology, 3, 36–41.
42 42. Ren, Z. W. (2003). Application of activator in flotation of oxide copper ore. Yunnan Metallurgy, 32(1), 24–25.
43 43. Cai, J. P., Su, C., Ma, Y. Y., Yu, X. C., Peng, R., Li, J. L., Zhang, X. L., Fang, J. J., Shen, P. L., & Liu, D. W. (2022). Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. International Journal of Mining Science and Technology, 32(3), 575–584.
44 44. Feng, Q. C., Zhao, W. J., & Wen, S. M. (2018). Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Applied Surface Science, 436, 823–830.
45 45. Shao, H. (1999). Progress in research on eliminating influences of slime on refractory copper oxide ore flotation. Yunnan Metallurgy, 3, 15–18.
46 46. Guang, X., Wen, S. M., Vang, X., & Feng, Q. (2021). Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide. Transactions of Nonferrous Metals Society of China, 31(11), 3564–3578. https://www.sciencedirect.com/science/article/pii/S1003632621657485
47 47. Yin, W. Z., Sun, Q. Y., Li, D., Tang, Y., Fu, Y., & Yao, J. (2019). Mechanism and application on sulphidizing flotation of copper oxide with combined collectors. Transactions of Nonferrous Metals Society of China, 29(1), 178–185. https://www.sciencedirect.com/science/article/abs/pii/S100363261864926X
48 48. Seredkin, Y. G., Aksenov, A., & Senchenko, A. (2014). Searching for technology for complex gold-copper ore treatment. In IMPC 2014 - 27th International Mineral Processing Congress.
49 49. Novokshanova, V. N., Lebed, A. B., Vasilev, E. A., & Naboychenko, S. S. (2013). Research of a heap leaching of copper from the Volkovskoe deposit ore (pp. 28–31).
50 50. Zafar, K., & Kauser, M. (1988). Leaching of chalcopyrite by Thiobacillus thiooxidans and oxidized copper ore by Thiobacillus ferrooxidans isolated from local environments. World Journal of Microbiology and Biotechnology, 4, 447–453. https://doi.org/10.1007/BF00940171
51 51. Türk, F., & Arslanoğlu, H. (2024). Investigation of leaching conditions and leaching kinetics of oxidized copper ore malachite at atmospheric pressure using tartaric acid solution. Transactions of the Indian Institute of Metals, 77, 1–7. https://doi.org/10.1007/s12666-024-03358-0
52 52. Faxin, X., Zhihua, L., Yu, P., Xuwei, L., Yaoyu, Y., Shuchen, S., & Ganfeng, T. (2024). Leaching kinetics of Cu from low-grade oxidized copper ore with high alkalinity gangue using EDTA·2Na solution. JOM. https://doi.org/10.1007/s11837-024-06649-5
53 53. Gorlova, O., Medyanik, N., Yun, A., & Sinyanskaya, O. (2018). Combined processing of dumped complex copper ores of the Taskora deposit: Process development and field trials. Tsvetnye Metally, 14–20. https://doi.org/10.17580/tsm.2018.12.02
54 54. Konareva, T., & Kirilchuk, M. (2020). Research of combined reagent schemes of activation leaching of gold from oxidized ores of the Malmyzh field. E3S Web of Conferences, 192, 02020. https://doi.org/10.1051/e3sconf/202019202020
55 55. Tomina, V., Khrennikov, A., Lebed, A., & Naboichenko, S. (2010). Heap leaching of copper from the ores of Volkovskoe deposit. Russian Journal of Non-Ferrous Metals, 51, 263–267. https://doi.org/10.3103/S1067821210040012
В ожидании