374

Ultrafine metal filament systems and semiconductors that effectively absorb Ultra-High Frequency (UHF) radiation have been obtained. Research of high-frequency properties of these systems in the frequency range GHz at temperatures  was carried out. For ultrafine mercury filament, the temperature dependence of the absorption of UHF-radiation is not monotonous. It is found that the temperature dependence of the UHF-radiation absorption in these filaments in the field of superconducting transition and melting type transition is qualitatively different from the dependence observed for thicker filaments. The experimental results are interpreted based on the model of weak shielding of high-frequency fields in ultrafine conductors

  • Web Address
  • DOI
  • Date of creation in the UzSCI system14-10-2020
  • Read count351
  • Date of publication19-06-2020
  • Main LanguageIngliz
  • Pages29-33
English

Ultrafine metal filament systems and semiconductors that effectively absorb Ultra-High Frequency (UHF) radiation have been obtained. Research of high-frequency properties of these systems in the frequency range GHz at temperatures  was carried out. For ultrafine mercury filament, the temperature dependence of the absorption of UHF-radiation is not monotonous. It is found that the temperature dependence of the UHF-radiation absorption in these filaments in the field of superconducting transition and melting type transition is qualitatively different from the dependence observed for thicker filaments. The experimental results are interpreted based on the model of weak shielding of high-frequency fields in ultrafine conductors

Name of reference
1 1. Landau L.D., Lifshitz E.M. The electrodynamics of continuous media. Theoretical physics. М. (1992). Т. 8. 661 с
2 2. Butko V.Y. FTT 38, 4, (1996)
3 3. Bogomolov V.N. UFS 124, 1, 171 (1978)
4 4. Buravov L.I. ZTF 50, 2, 252 (1980)
5 5. Kovneristy Yu.K., Lazarev I.Yu., Ravayev A.A. Material’s absorbing UHF radiation. М. (1982). 123 с
6 6. Bogomolov V.N., Kolla E.V., Kumzerov Y.A. Letters to JETF 41, \it 1, 28 (1985).
7 7. Leonid A. Belov; Sergey M. Smolskiy; Victor N. Kochemasov (2012). Handbook of RF, Microwave, and Millimeter-Wave Components. Artech House. pp. 27–28. ISBN 978-1-60807-209-5.
8 8. "IEEE 521-2002 - IEEE Standard Letter Designations for Radar-Frequency Bands". Standards.ieee.org. Retrieved 17 December 2017.
9 9. R.L. Cava, B. Batlogg, R.B. van Dover, D.W. Murphy, S.A. Sunshine, G.P. Espinosa. Phys. Rev. Lett. 58, 1676 (1987).
10 10. G. Hilsher, E. Holland-Moritz, T. Holuhar, H.-D. Jostarndt, V. Nekvasil, G. Schaudt, U. Walet, G. Fillion. Phys. Rev. B49,535 (1994).
11 11. V.F. Masterov, F.S. Nasredinov, N.P. Seregin, P.P. Seregin, M.A. Sagatov. J. Phys. Cond. Matter. 7, 2345 (1995).
12 12. G. Wortmann, A. Kolodziejczyk, M. Bergold, G. Stadermann, C.T. Simmons, G. Kaind. Hyperfine Interact 50, 555 (1989).
13 13. G. Wortmann, I. Felner. Solid State Commun. 75, 981 (1990).
14 14. J.M. Tarascon, W.R. McKinnon, L.H. Greene, G.W. Hull, E.M. Vogel. Phys. Rev. B36, 226 (1987); Y. le Page, T. Siegrist, S.A. Sunshine, L.F. Schneemeyer, D.W. Murphy, S.M. Zahurak, J.V. Waszczak, W.R. McKinnon, J.M. Tarascon, G.W. Hull, L.H. Greene. Phys. Rev. B36, 3617 (1987).
15 15. A. Ladelli, A. Palenzona. In: Handbook on the Physics and Chemistry of Rare Earth / Ed. K.A. Geschneidner. London (1979). V. 2. P. 1.
16 16. Ruzieva, M.A.; Bobomurodov, Q.Kh.; Bobomurodov, S.Q.; and Shokirov, R.A. (2020) "PROBLEMS OF COEXISTENCE OF SUPERCONDUCTIVITY AND MAGNETIC ORDERING OF COPPER SUBLATTICES IN YBa2Cu3-XFeXO7-X CERAMICS," Technical science and innovation: Vol. 2020 : Iss. 1 , Article 8. Available at: https://uzjournals.edu.uz/btstu/vol2020/iss1/8
Waiting