364

In  this  paper  described  some  quadratic  operators  which  map  the 
  1  n
– 
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the 
first  class  contains  all 
n n n  
  -  cubic matrices with  nonpositive  entries which  in  each 
n n
 
dimensional 
 k
th matrix contains exactly one non-zero row and exactly one non-zero column; the 
second class contains all 
n n n  
- cubic matrices with non-positive entries which has at least one 
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent 
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we 
find trajectories of quadratic maps which map 
2 I
 to itself. In  this  paper  described  some  quadratic  operators  which  map  the 
  1  n
– 
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the 
first  class  contains  all 
n n n  
  -  cubic matrices with  nonpositive  entries which  in  each 
n n
 
dimensional 
 k
th matrix contains exactly one non-zero row and exactly one non-zero column; the 
second class contains all 
n n n  
- cubic matrices with non-positive entries which has at least one 
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent 
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we 
find trajectories of quadratic maps which map 
2 I
 to itself. 

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 15-02-2021
  • Read count 362
  • Date of publication 15-02-2021
  • Main LanguageIngliz
  • Pages10-23
English

In  this  paper  described  some  quadratic  operators  which  map  the 
  1  n
– 
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the 
first  class  contains  all 
n n n  
  -  cubic matrices with  nonpositive  entries which  in  each 
n n
 
dimensional 
 k
th matrix contains exactly one non-zero row and exactly one non-zero column; the 
second class contains all 
n n n  
- cubic matrices with non-positive entries which has at least one 
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent 
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we 
find trajectories of quadratic maps which map 
2 I
 to itself. In  this  paper  described  some  quadratic  operators  which  map  the 
  1  n
– 
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the 
first  class  contains  all 
n n n  
  -  cubic matrices with  nonpositive  entries which  in  each 
n n
 
dimensional 
 k
th matrix contains exactly one non-zero row and exactly one non-zero column; the 
second class contains all 
n n n  
- cubic matrices with non-positive entries which has at least one 
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent 
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we 
find trajectories of quadratic maps which map 
2 I
 to itself. 

Русский

В  статье  изучено  квадратичные  операторы  которые  отображает 
  1  n
–мерное симплекс идемпотентных мер на себе. Такие операторы разделяется на два 
класса: первый класс  содержит  все 
n n n  
- кубические матрицы  с неотрицательными 
элементами  которые  в  каждой  из   
n n
  мерное 
 k
матрица  содержит  ровно  один  не 
равным  нулю  строка  и  ровно  один  не  равным  нулю  столбца;  второй класс  содержит  все 
n n n  
-  кубические  матрицы  с  неотрицательными  элементами  которые  имеют  по 
крайней  мере  один  квадратная  нулевая  матрица.  Эти  матрицы  играют  роль 
стохастических матриц  в  случае идемпотентных мер. Для обоих классов квадратичных 
операторов  мы  находили  неподвижные  точки  и  их  характеристика.  И  также,  мы 
находили траекториям квадратичных операторов которые отображает 
2 I
 на себе.  

Ўзбек

Ushbu  maqolada 
  1  n
–o’lchovli  idempotent  ehtimolliklar  simpleksini 
o’zini  o’ziga  akslantiruvchi  kvadratik  operatorlar  o’rganilgan.  Bunday  operatorlar  ikki  sinfga 
bo’linadi: birinchi sinf nomusbat qiymatlarni qabul qiluvchi va har bir 
n n
 o’lchovli 
 k
matritsaaynan  bitta  nol  bo’lmagan  ustun  va  aynan  bitta  nol  bo’lmagan  satrdan  iborat  barcha  kubik 
matritsalar;  ikkinchi  sinf  esa,  kamida  bitta 
n n
  o’lchovli  matritsasi  nol  matritsa  bo’lgan, 
nomusbat elementli 
n n n  
- o’lchovli barcha kubik matritsalardir. Ushbu matritsalar idempotent 
ehtimolliklar o’lchovi uchun stоxastik matritsa rolini o’ynaydi. Mazkur ishda har ikkala sinf uchun 
ham  qo’zg’almas  nuqtalar  va  ularning  xarakterlari  topilgan.  Shuningdek, 
2 I
  ni  o’zini  o’ziga 
akslantiruvchi kvadratik operatorlarning traektoriyalari ham topilgan.  

Author name position Name of organisation
1 Jorayev I.T.
Name of reference
1 Shiryaev, A.N. (1996), Probability, 2 nd Ed. Springer.
2 Ganikhodzhayev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), Quadratic stochastic operators and processes: Results and Open Problems, Infin. Dim. Anal., Quantum Probab. Related Topics. 14(2), 279-285.
3 Akian,M. (1999), Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc., 351(4), 4515-4543.
4 Casas, J.M., Ladra, M., and Rozikov, U.A. (2011), A chain of evolution algebras, Linear Algebra. Appl., 435(4), 852-870.
5 Del Moral, P. and Doisy, M. (1999), Maslov idempotent probability calculus, II. Theory Probab. Appl., 44, 319-332.
6 Litvinov, G.L. and Maslov, V.P. (2003), Idempotent Mathematics and Mathematical Physics, Vienna.
7 Zarichnyi, M.M. (2010), Spaces and maps of idempotent measures, Izvestiya: Mathematics. 74(3), 481-499.
8 Rozikov, U.A. and Karimov, M.M. (2013), Dinamics of linear maps of idempotent measures, Lobachevskii Journal of Mathematics, 34(1), 20-28.
9 Juraev, I.T. and Karimov, M.M. (2019), Quadratic Operators Defined on a Finite- dimensional Simplex of Idempotent Measures, Journal of Discontinuity, Nonlinearity and Complexity, 8(3), 279-286
Waiting