118

Numerical calculation of electronic and atomic structures of complex systems of crystalline and transitional nano- and micro-sizes by using quantum physical methods will make it possible to forecast new properties of crystalline silicon with various concentrations of clusters of impurity atoms, structural arrangement at lattice sites and types of clusters. The quantum-chemical method was used to calculate the required characteristics of the cell, i.e. the charge state and electrostatic potential for the base matrix of Si (silicon) and silicon with an impurity cluster consisting of 3 tetrahedral cells type- Si2ZnS in the base lattice of Si. Calculation of the electrostatic potential of the base lattice of Si, and silicon with an impurity cluster of Si2ZnS in the Si lattice revealed a noticeable change in the potential intensity at the cell sites. In the cluster, charge transfer occurs from S (sulfur) atoms to Zn (zinc) atoms. Zn atoms at sites acquire a negative charge while S atoms acquire a positive charge. In fact, the numerical calculation confirms the hypothesis that instead of completing its structure to the most stable electronic configuration ... s2p6, in certain cases the chalcogen atom can also donate some of its electrons to form a quasi-stable configuration ... sp3.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system15-02-2021
  • Read count116
  • Date of publication25-10-2020
  • Main LanguageIngliz
  • Pages140-147
English

Numerical calculation of electronic and atomic structures of complex systems of crystalline and transitional nano- and micro-sizes by using quantum physical methods will make it possible to forecast new properties of crystalline silicon with various concentrations of clusters of impurity atoms, structural arrangement at lattice sites and types of clusters. The quantum-chemical method was used to calculate the required characteristics of the cell, i.e. the charge state and electrostatic potential for the base matrix of Si (silicon) and silicon with an impurity cluster consisting of 3 tetrahedral cells type- Si2ZnS in the base lattice of Si. Calculation of the electrostatic potential of the base lattice of Si, and silicon with an impurity cluster of Si2ZnS in the Si lattice revealed a noticeable change in the potential intensity at the cell sites. In the cluster, charge transfer occurs from S (sulfur) atoms to Zn (zinc) atoms. Zn atoms at sites acquire a negative charge while S atoms acquire a positive charge. In fact, the numerical calculation confirms the hypothesis that instead of completing its structure to the most stable electronic configuration ... s2p6, in certain cases the chalcogen atom can also donate some of its electrons to form a quasi-stable configuration ... sp3.

Name of reference
1 1. Brudniy V.N., Grinyaev S.N., Dvurechenskiy A.V. Elektronniye svoystva kremniya s germaniyevimi klasterami ultramalyih razmerov. // FTT. Sankt-Peterburg, 2005. T. 47, Vyp. 11. S. 1941-1945
2 2. Xaqqulov M.K., Mavlyanov A.Sh., Sharofutdinov N. Modelniy raschet parametra elementarnоgo yacheyka Si2Zn2S metodom funksionala elektronnoy plotnosti DFT. //Nauchno-texnicheskaya konferentsiya «Nauchno-metodicheskie problemy injenernoy fiziki», 8-9 sentyabrya – Tashkent, 2017. S .65-67.
3 3. Jensen Frank. Introduction to Computational Chemistry, Second Edition, 2007. John Wiley & Sons, Ltd. P.133-204.
4 4. Yu M. Local-basis quasiparticle calculations and the dielectric response function of Si clusters / M.Yu, S.E.Ulloa, D.A. Drabold // Phys.Rev.B., 2000. V.61. P. 2626-2631.
5 5. Yefimov V.P. Klasterniye obrazovaniya provodyashih kvantovih struktur v monokristallicheskom kremnii dlya gelioenergetiki // FIP PSE, 2009. T. 7. № 4. Vol. 7. No. 4. S.401-407.
6 6. Ugay Ya.A. O ximii poluprovodnikov // Sorovskiy obrazovatelniy jurnal, 1997. №6. S.36-39.
7 7. Krivelevich S.A. et al. Diffusion and phase formation in ternary silicate systems framed by an ion bombardment // Proceeding SPIE. Vol 6260. P.52-59. (2006).
8 8. Krivelevich S.A. Sozdanie shirokozonnyh poluprovodnikov na osnove kremniya za schet formirovaniya klasternyx podreshetok // Tezisi dokladov VII Mejdunarodnoy konferensii «KREMNIY–2010».- Nijniy Novgorod, 2010. S.170-171.
9 9. Shengurov D.V., Chalkov V.Yu., Denisov S.A., Shengurov V.G., Stepihova M.V., Krasilnikova L.V., Kudryavsev K.Ye., Shmagin V.B., Krasilnik Z.F. Vyrashivaniye pri nizkih temperaturah (~400°C) svetoizluchayushih struktur s sloyami kremniya, slegirovannogo atomami erbiya i kisloroda // Tezisi dokladov VII Mejdunarodnoy konferensii «KREMNIY–2010».- Nijniy Novgorod, 2010. S.103-104.
10 10. Baxadyrhanov M.K., Sodikov U., Zikrillaev N.F., Norkulov N. Razrabotka fizicheskih osnov nanorazmernyh struktur na osnove molekuloobrazovaniya S++Mn- - i Se++Mn- - v reshetke Si. Elektronnaya obrabotka materialov, 2007. № 5. S. 106−108.
11 11. Talanin V.I., Talanin I.Ye. Kompleksoobrazovanie v poluprovodnikovom kremnii v sootvetstvii s modelyu tverdogo tela Vlasova // FTT- Sankt-Peterburg, 2016. T. 58. Vyp. 10. S.1977-1981.
12 12. Lonchakov A.T. O prirode nizkotemperaturnoy anomalii dinamicheskih moduley uprugosti v kubicheskih kristallah AIIBVI s primesyami 3d-perehodnyh metallov // Fizika nizkih temperatur, 2011. T. 37. № 4.S. 450–455.
13 13. Baxadyrhanov M. K., Saparniyazova Z. M., Iliev X. M., Ismaylov K. A. Vzaimodeystvie mnogozaryadnyx nanoklasterov atomov margansa s atomami selena i tellura v kremnii. // Neorganicheskie materiali, 2015. T. 51. № 8. S. 838-842.
14 14. Bakhadirkhanov M. K., Mavlyanov A., Sodikov U., Khakkulov M. Silicon with Binary // Elementary Cells as a Novel Class of Materials for Future Photoenergetics// ISSN 0003_701X. Applied Solar Energy, 2015. Vol. 51. No. 4. P. 258–261. Allerton Press, Inc., 2015.
15 15. Mavlyanov A.Sh., Sodikov U.X., Xaqqulov M. Formirovanie kvantovyh tochek v reshetke kremniya s uchastiem primesnyh atomov»//Fizika fanining rivojida iste’dodli yoshlarning o’rni» Ilmiy-amaliy konferensiya «IAK-VIII» 24-25 aprel – Tashkent, 2015. S.409-412.
Waiting