260

The study and prediction o f the deformation properties o f the materials studied
in the work is possible on the basis o f mathematical modeling o f deformation and relaxation
processes. In this article, we give an algorithm for solving a nonlinear functional equation with
complex variables resulting from mathematical modeling o f problems concerning the properties o f a
deformable solid.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 13-09-2022
  • Read count 260
  • Date of publication 11-09-2020
  • Main LanguageIngliz
  • Pages20-26
English

The study and prediction o f the deformation properties o f the materials studied
in the work is possible on the basis o f mathematical modeling o f deformation and relaxation
processes. In this article, we give an algorithm for solving a nonlinear functional equation with
complex variables resulting from mathematical modeling o f problems concerning the properties o f a
deformable solid.

Ўзбек

Qaralayotgan materiallarning deformatsion xossalarini tadqiqot va bashorat
qilish, deformatsiya va relaksatsiya jarayonlarni matematik modellashtirish orqali amalga oshiriladi.
Ushbu maqolada biz deformatsiyaluvchi qattiq jismlarni xossalarini oid masalalar matematik
modellashtirish jaroyonida uchraydigan kompleks o'zgaruvchili nochiziqli funksional tenglamalarni
yechishning Myuller usuli qo'llab algoritmi keltirilgan.

Русский

Исследование и прогнозирование деформационных свойств изучаемых в
работе материалов возможно на основе математического моделирования деформационных
и релаксационных процессов. В данной статье мы даем алгоритм решения нелинейного
функционального уравнение с комплексными переменными получающегося процессе
математического моделирование задач касательно свойств деформируемого твёрдого тела.

Name of reference
1 1. Myachenkov V I, Maltsev V P 1984 Methods and algorithms for calculating spatial structures on computer Mechanical Engineering p 278
2 2. Mavlanov T. 2020 Development of methods and algorithms for calculating shell structures taking into account structural inhomogeneity and interaction with various media TIIAME p 200
3 3. Grigorenko Ya М, Bespalova Е I, 1971 Numerical solution of boundary value problems of the statics of orthotropic layered shells of revolution on a M-220 computer Methodological supplies -(Kiev, Naukova dumka) pp 151
Waiting