189

Mazkur ilmiy ishda Samarqand viloyatida tomchilatib sug‘orish tizimidan foydalanishda tuproq namligini masofadan aniqlas bo‘yicha ishlab chiqilgan texnologiyaning sinov natijalari ko‘rsatilgan. Tadqiqot olib borilgan hududning o‘rtacha yillik yog‘ingarchilik miqdori 370 mm, maydon kengligi 240 000 m2ni tashkil etadi. O‘rganilayotgan texnologiya asosida sinovdan o‘tkazilayotgan obyekt Samarqand viloyati Payariq tumanida dengiz sathidan 634 m yuqorida joylashgan 40°00’43.97’’ 66°54’51.35. Obyekt jami 12 ta kichik maydonlarga bo‘lib o‘rganildi. Bunda har bir kichik obyektga bir donadan namlikni o‘lchash sensorlari o‘rnatilib, ularning aloqa almashishi uchun GSM modullardan foydalanildi. Natijalar samaradorligi va aniqligini tahlil etish uchun har bir sensordagi ma’lumotlar ikki kunda bir marta klassik usul orqali termostatlarda ham tekshirildi. Klassik usulda o‘lchangan namlik va sensorlardagi namliklar farqi bo‘yicha grafi k va maksimal sensorlarning o‘zaro masofalari jadvali ishlab chiqildi. Olib borilgan ilmiy ishning amaldagi tajribalardan asosiy farqi namlik monitoringi tuproqning 3 xil chuqurligida va yengil qumoq, o‘rta qumoq, og‘ir qumoq, gilli qatlamlarda olib borilganligida. Hozirgi kunda bu kabi texnologiyalarga talab o‘ta yuqori. Tomchilatib sug‘orish tizimidagi yer maydonlar o‘rtacha 15-20 gektarni tashkil etib, bunda sug‘orish oralig‘i va sug‘orish me’yorini aniqlashda daladagi tuproq namligi yuqori o‘rin tutadi. Har doim ham tuproq namunalarini klassik, ya’ni termostat yoki bosh quritish usullari bilan aniqlashning vaqt jihatdan imkoni yo‘q. Quyidagi biz ikki turdagi tuproqni aniqlash usuliga sarflangan vaqt va uning aniqlik darajalarini ham ko‘rib o‘tamiz. Klassik va zamonaviy usulda olingan namlik natijalaridagi xatoliklar klassikda 1%, zamonaviy usulda 10%, zamonaviy usulda olingan ma’lumotlar aniqligini 90 foizdan 97,5-98,5 foizga ko‘tarish bo‘yicha yechimlar ko‘rib chiqiladi.

  • Read count 129
  • Date of publication 16-02-2023
  • Main LanguageO'zbek
  • Pages62-71
Ўзбек

Mazkur ilmiy ishda Samarqand viloyatida tomchilatib sug‘orish tizimidan foydalanishda tuproq namligini masofadan aniqlas bo‘yicha ishlab chiqilgan texnologiyaning sinov natijalari ko‘rsatilgan. Tadqiqot olib borilgan hududning o‘rtacha yillik yog‘ingarchilik miqdori 370 mm, maydon kengligi 240 000 m2ni tashkil etadi. O‘rganilayotgan texnologiya asosida sinovdan o‘tkazilayotgan obyekt Samarqand viloyati Payariq tumanida dengiz sathidan 634 m yuqorida joylashgan 40°00’43.97’’ 66°54’51.35. Obyekt jami 12 ta kichik maydonlarga bo‘lib o‘rganildi. Bunda har bir kichik obyektga bir donadan namlikni o‘lchash sensorlari o‘rnatilib, ularning aloqa almashishi uchun GSM modullardan foydalanildi. Natijalar samaradorligi va aniqligini tahlil etish uchun har bir sensordagi ma’lumotlar ikki kunda bir marta klassik usul orqali termostatlarda ham tekshirildi. Klassik usulda o‘lchangan namlik va sensorlardagi namliklar farqi bo‘yicha grafi k va maksimal sensorlarning o‘zaro masofalari jadvali ishlab chiqildi. Olib borilgan ilmiy ishning amaldagi tajribalardan asosiy farqi namlik monitoringi tuproqning 3 xil chuqurligida va yengil qumoq, o‘rta qumoq, og‘ir qumoq, gilli qatlamlarda olib borilganligida. Hozirgi kunda bu kabi texnologiyalarga talab o‘ta yuqori. Tomchilatib sug‘orish tizimidagi yer maydonlar o‘rtacha 15-20 gektarni tashkil etib, bunda sug‘orish oralig‘i va sug‘orish me’yorini aniqlashda daladagi tuproq namligi yuqori o‘rin tutadi. Har doim ham tuproq namunalarini klassik, ya’ni termostat yoki bosh quritish usullari bilan aniqlashning vaqt jihatdan imkoni yo‘q. Quyidagi biz ikki turdagi tuproqni aniqlash usuliga sarflangan vaqt va uning aniqlik darajalarini ham ko‘rib o‘tamiz. Klassik va zamonaviy usulda olingan namlik natijalaridagi xatoliklar klassikda 1%, zamonaviy usulda 10%, zamonaviy usulda olingan ma’lumotlar aniqligini 90 foizdan 97,5-98,5 foizga ko‘tarish bo‘yicha yechimlar ko‘rib chiqiladi.

Русский

В данной научной работе приведены результаты испытаний разработанной технологии дистанционного определения влажности почвы при использовании системы капельного орошения в Самаркандской области. Среднегодовое количество осадков в районе исследований составляет 370 мм, площадь – 240 000 м2. Объект, на котором проходят испытания изучаемой технологии, расположен на высоте 634 м над уровнем моря в Пайарыкском районе Самаркандской области с координатами 40°00’43.97’’ 66°54’51.35. Всего объект был разделен на 12 небольших участков, где в каждом небольшом объекте были установлены датчики измерения влажности, а для их связи использовались GSM-модули. Для анализа эффективности и точности результатов данные с каждого датчика проверялись один раз в 2 дня в термостатах по классической методике. График и таблица максимальных взаимных расстояний датчиков были построены на основе влажности, измеренной классическим способом, и разницы влажности в датчиках. Основное отличие проведенной научной работы от практических экспериментов заключается в том, что мониторинг влажности проводился на 3-х разных глубинах почвы в легко-, средне- и тяжелосуглинистых слоях глины. В настоящее время спрос на такие технологии очень высок, как известно, площадь земель в системе капельного орошения составляет в среднем 15-20 га, а влажность почвы на поле играет основную роль в определении интервала поливов и поливной нормы. Не всегда есть возможность по времени определить пробы почвы классическими, т. е. термостатными или напорными методами. В данной статье рассмотрены методы, используемые для определения двух типов грунта, и уровни их точности.

English

This scientific piece of work shows findings from tests of the technology designed for remote determination of the soil moisture in the use of drip irrigation system in Samarkand region. The average annual rainfall of the research area is 370 mm, the area is 240 000 m2. The site where the technology was subject for tests, is located 634 m above the sea level in Payariq district of Samarkand region 40°00’43.97’’ 66°54’51.35. The area was divided into 12 smaller sites, humidity measuring sensors were installed in each of the sites and GSM modules were used for their communication. To ensure efficiency and accuracy of the results, we would check the data collected by each sensor once every 2 days by thermostats, using a classical method. A graph and a table of maximum sensor mutual distances were developed based on the humidity levels measured in the classical way as well as applying the humidity difference in the sensors. The main difference between the conducted scientific work and practical experiments is that monitoring of the moisture levels was carried out at 3 different depths of the soil and in layers of the light-, medium- and heavy loams. As a matter of fact, currently, such technologies are highly demanded as the area of lands in the drip irrigation system covers in average 15-20 hectares, and the soil moisture is important for determining the irrigation intervals and time. However, it is not always possible, time-wise, to determine the soil samples using the classic-, thermostat- or head drying methods. This article will review the methods applied for determining the two types of soil and their accuracy levels.

Author name position Name of organisation
1 Arifjanov A.M. texnika fanlari doktori, professor, “Gidravlika va gidroinformatika” kafedrasi mudiri “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqot universiteti
2 Samiyev L.N. texnika fanlari doktori, “Gidravlika va gidroinformatika” kafedrasi dotsenti “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqot universiteti
3 Otaxonov M.Y. texnika fanlari bo‘yicha falsafa doktori (PhD), “Gidravlika va gidroinformatika” kafedrasi dotsenti “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqot universiteti
4 Jalilov S.M. “Gidravlika va gidroinformatika” kafedrasi magistranti “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqot universiteti
Name of reference
1 Ajayan A., Kumari V.S., Rahim F.A., Ooraj S. Smart Drip Using Arduino Microcontroller. Comput. Sci. Eng., 2019, p. 1. DOI: 10.26438/ijcse/v7i6.822829/.
2 Stan M., Pana I., Minescu M., Ichim A., Teodoriu C. Centrifugal pump monitoring and determination of pump characteristic curves using experimental and analytical solutions. Processes, 2018, p. 1. DOI: 10.3390/PR6020018/.
3 Juana L., Rodrguez-Sinobas L., Losada A. Determining Minor Head Losses in Drip Irrigation Laterals. I: Methodology. Irrig. Drain. Eng., 2002, p. 1. DOI: 10.1061/(asce)0733-9437(2002)128:6(376)/.
4 Kiri S.V., Lapono L.A.S. Otomatisasi sistem irigasi tetes berbasis Arduino Nano. Fis. Sains dan Apl., 2017, p. 2.
5 Kumari A., Sahu P.K. Internet of things-based smart drip irrigation using Arduino. Comput. Theor. Nanosci., 2020, pp. 1–2. DOI: 10.1166/jctn.2020.9286.
6 Arunadevi B., Venkatesh A.V., Prasannadevi V., Preethi S. Sensor based smart drip irrigation system for sustainable agricultural practices. Green Eng., 2020, p. 2.
7 Okwanga R.A., Mwesigwa D. Effectiveness of drip irrigation in enhancing smart farming: a microstudy in Oyam district, mid-north Uganda. Soc. Sci. Humanit. Res., 2021, p. 7.
8 Agrawal N., Singhal S. Smart drip irrigation system using raspberry Pi and Arduino. 2015, p. 2. DOI: 10.1109/CCAA.2015.7148526/.
9 Shilpa A. Smart Drip Irrigation System. International Journal of Trend in Scientific Research and Development (IJTSRD), ISSN: 2456-6470, 2018, June, vol. 2, iss. 4, pp. 1560-1565. DOI: 10.31142/ ijtsrd12888/. Available at: https://www.ijtsrd.com/papers/ijtsrd12888.pdf/.
10 Chandra S., Bhilare S., Asgekar M., Ramya R.B. Crop water requirement prediction in automated drip irrigation system using ML and IoT. 2021, p. 2. DOI: 10.1109/ICNTE51185.2021.9487767/.
11 Leach J.M., Coulibaly P. Soil moisture assimilation in urban watersheds: A method to identify the limiting imperviousness threshold based on watershed characteristics. Hydrol., 2020, p. 4. DOI: 10.1016/j.jhydrol.2020.124958/.
12 Salman M., Chaer I., Abdullah S. H., Priyati A. Aplikasi mikrokontroler Arduino Pada sistem irigasi tetes untuk tanaman SAWI (Brassica juncea) [Application of Arduino Microcontroller on Drip Irrigation System for Mustard Plant (Brassica juncea)]. Ilm. Rekayasa Pertan. dan Biosist., 2016, p. 2.
13 Babu Y.A., Priya B.S.K., Reshma K., Satyanarayana A.V., Vinay D. Design, implementation and performance analysis of iot based smart irrigation system for paddy and maize fields. Adv. Res. Dyn. Control Syst., 2020, p. 5. DOI: 10.5373/JARDCS/V12I2/S20201039/.
14 Martinez O., Arguello C., León J., Carguacundo P. D.C., Daga G.E.C. Prototype of automated irrigation system improves the yield of potatoes (Solanum tuberosum L.) in Riobamba-Ecuador using wireless network sensors-WSN and 6LoWPAN. MASKAY, 2019, p. 4. DOI: 10.24133/maskay.v9i2.1058/.
15 Sudarmaji A., Sahirman S., Saparso, Ramadhani Y. Time based automatic system of drip and sprinkler irrigation for horticulture cultivation on coastal area. IOP Conf. Ser.: Earth Environ. Sci, 2019, p. 1. DOI: 10.1088/1755-1315/250/1/012074/.
16 Jadhav R.R., Mali A.U., Patil S., Desai S.R., More M.S. Automatic drip irrigation system using wireless sensor technique powered by solar system. Int. J. Eng. Res. Technol., 2020, p. 1.
17 Debnath S.S., Choudhury A.D., Agarwal A. Implementation of iot for studying different types of soils for efficient irrigation. 2020, p. 2. DOI: 10.1007/978-981-15-4932-8_42/.
18 Das A., Gupta Y., Wedhane N.V., Islam M.R. Smart water management in irrigation system using IoT. 2021, p. 1. DOI: 10.1007/978-981-33-6393-9_35/.
19 Block diagram of IoT based home security. Available at: https://www.researchgate.net/ figure/Block-Diagram-of-IoT-based-Home-Security-A-Raspberry-Pi-3-Model-B-Raspberry-Pi-3_ fig2_330715621/ (accessed 10.11.2019).
20 The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. Available at: https://store.arduino.cc/products/arduino-mega-2560-rev3/ (accessed 09.01.2017).
21 Trema radio module NRF24L01 + 2.4G is designed to receive and transmit data over the radio channel in the ISM radio frequency range. Available at: https://iarduino.ru/shop/Expansion-payments/ radio-modul-nrf24l01-2-4g-trema-modul-v2-0.html/ (accessed 08.11.2018).
Waiting