279

Ushbu maqolada asinxron motor reaktiv quvvatini nazorat qilish va boshqarish uchun tok o‘zgartkichidan foydalanildi. Tok o‘zgartkich asinxron motor stator pazlari va asosiy chulg‘am pona orasiga joylashtirildi. Bu esa asinxron motor stator chulg‘amida hosil bo‘luvchi asosiy va sochiluvchan magnit oqimlar hisobiga kuchlanish ko‘rinishida signal chiqaradi. Turli xususiyatli miqdorlarning o‘zaro ta’sirini hisobga olgan holda, o‘lchov chulg‘amidan olinayotgan signalning dinamik xususiyatlarini o‘rganish o‘zgartkichning birlamchi va ikkilamchi signal o‘zgartirish bo‘laklari, signal uzatish elementlari hamda o‘tish jarayonlarini tavsiflovchi differensial tenglamalarni shakllantirishda yuzaga keladigan qiyinchiliklar tufayli tadqiqotlarning ilg‘or matematik apparati – graf modeli va uning analitik ifodalari asosida olib boriladi. Tok o‘zgartkichning asosiy elementi o‘lchov chulg‘ami, ya’ni sezgir element hisoblanadi. O‘lchov sezgir elementi asinxron motor stator pazlari sonidan kelib chiqib, ikki yoki uch halqali qilib joylashtiriladi. Mustaqil o‘lchov chulg‘amiga nisbatan o‘lchashning aniqligi, ishonchliligi, sezgirligi ortadi. O‘lchov sezgir element halqalari mustaqil yoki ketma-ket ulanadi. Ketma-ket ulanganda, chiqish kuchlanishining miqdori ikki marta oshadi. Mustaqil va ketma-ket ulaganimizda, asinxron motor birlamchi stator tokiga ta’sirining dinamik tavsiflar yordamida tadqiqoti olindi.

  • Read count 188
  • Date of publication 14-04-2023
  • Main LanguageO'zbek
  • Pages22-29
Ўзбек

Ushbu maqolada asinxron motor reaktiv quvvatini nazorat qilish va boshqarish uchun tok o‘zgartkichidan foydalanildi. Tok o‘zgartkich asinxron motor stator pazlari va asosiy chulg‘am pona orasiga joylashtirildi. Bu esa asinxron motor stator chulg‘amida hosil bo‘luvchi asosiy va sochiluvchan magnit oqimlar hisobiga kuchlanish ko‘rinishida signal chiqaradi. Turli xususiyatli miqdorlarning o‘zaro ta’sirini hisobga olgan holda, o‘lchov chulg‘amidan olinayotgan signalning dinamik xususiyatlarini o‘rganish o‘zgartkichning birlamchi va ikkilamchi signal o‘zgartirish bo‘laklari, signal uzatish elementlari hamda o‘tish jarayonlarini tavsiflovchi differensial tenglamalarni shakllantirishda yuzaga keladigan qiyinchiliklar tufayli tadqiqotlarning ilg‘or matematik apparati – graf modeli va uning analitik ifodalari asosida olib boriladi. Tok o‘zgartkichning asosiy elementi o‘lchov chulg‘ami, ya’ni sezgir element hisoblanadi. O‘lchov sezgir elementi asinxron motor stator pazlari sonidan kelib chiqib, ikki yoki uch halqali qilib joylashtiriladi. Mustaqil o‘lchov chulg‘amiga nisbatan o‘lchashning aniqligi, ishonchliligi, sezgirligi ortadi. O‘lchov sezgir element halqalari mustaqil yoki ketma-ket ulanadi. Ketma-ket ulanganda, chiqish kuchlanishining miqdori ikki marta oshadi. Mustaqil va ketma-ket ulaganimizda, asinxron motor birlamchi stator tokiga ta’sirining dinamik tavsiflar yordamida tadqiqoti olindi.

Русский

В данной статье описано использование преобразователя тока для контроля и управления реактивной мощностью асинхронного двигателя. Трансформатор тока размещен между обмотками статора асинхронного двигателя и основной обмоткой. В результате возникает сигнал в виде напряжения из-за основного и блуждающего магнитных токов, генерируемых в обмотке статора асинхронного двигателя. Исследование динамических свойств сигнала, принимаемого от измерительного прибора, с учетом взаимодействия различных специфических величин, дифференциальных уравнений, описывающих переходные процессы в первичных и вторичных секциях изменения сигнала преобразователя, элементах передачи сигнала и за счет трудности в формировании, проводится на основе развитого математического аппарата – графовой модели и ее аналитических выражений. Основным элементом трансформатора тока является измерительная катушка, т. е. чувствительный элемент. В зависимости от количества пазов статора асинхронного двигателя измерительный чувствительный элемент выполнен в виде двух- или трехкольцевого. Точность измерения, надежность и чувствительность повышаются по сравнению с независимым измерительным устройством. Кольца датчиков подключаются независимо или последовательно. При последовательном соединении измерительных контуров величина выходного напряжения удваивается. Влияние асинхронного двигателя на первичный ток статора при независимом и последовательном соединении колец измерительного элемента получено с помощью динамических описаний.

English

This paper describes the use of a current transformer to monitor and control the reactive power of an induction motor. The current transformer is placed between the induction motor stator windings and the main winding. The result is a voltage signal due to the main and stray magnetic currents generated in the induction motor stator winding. The study of dynamic properties of the signal received from the measuring instrument, taking into account the interaction of various specific quantities, differential equations describing the transient processes in the primary and secondary sections of the transformer signal change, signal transmission elements and due to the difficulty in formation, is conducted on the basis of the developed mathematical apparatus - the graph model and its analytical expressions. The main element of the current transformer is the measuring coil, i.e. sensitive element. Depending on the number of slots of the induction motor stator the sensing element is made in the form of two- or three-ring. The measuring accuracy, reliability and sensitivity are increased compared to an independent measuring device. The sensor rings are connected independently or in series. When measuring circuits are connected in series, the output voltage value doubles. Influence of asynchronous motor on primary stator current at independent and series connection of gauge rings is obtained by means of dynamic descriptions.

 

 

Author name position Name of organisation
1 BOIXANOV Z.U. texnika fanlari boʻyicha falsafa doktori (PhD) Andijon mashinasozlik instituti
Name of reference
1 Allal, A., & Abderrahmane, K. (2022). Diagnosis of induction motor faults using the motor current normalized residual harmonic analysis method. International Journal of Electrical Power & Energy Systems, 141(2), pp. 208-219. doi:10.1016/j.ijepes.2022.108219
2 Al-Musawi, A., A. F., & Packianather, M. (2019, January). Three-phase induction motor fault detection based on thermal image segmentation. Infrared Physics & Technology, 104, pp. 3-7. doi:10.1016/j.infrared.2019.103140
3 Boikhanov, Z. (2022). Effect of changes in the active resistance of stator windings of an asynchronous electric motor on the output signal of a three-phase current converter. Chemical Technology. Control and Management, 1(103), pp. 48-52.
4 Boixanov, Z. (2021, December). GES asinxron dvigatellarining nosimmetrik rejimlari [Symmetric modes of HPP asynchronous motors]. Uzbekhydroenergetics(2), pp. 27-28.
5 Boixanov, Z. (2022). Boshqariluvchan chiqish kuchlanishli tok o‘zgartkichlarining dinamik tavsiflari [Dynamic characteristics of current converters with controlled output voltage]. Science and Innovative Development(2). doi:10.36522/21819
6 Boixonov, Z. (2021). Elektr ta’minoti tizimida reaktiv quvvat manbalari parametrlari [Parameters of reactive power sources in the power supply system]. Machine Building, 3(4), pp. 49-53.
7 Boykhonov, Z., & Makhsudov, M. (2018). Issledovaniye elektromagnitnykh preobrazovateley toka v napryazheniye [Research of electromagnetic current-to-voltage converters]. Bulletin of Science and Practice, 4(3), pp. 150-154.
8 Brindley, K. (1991). Izmeritel’nyye preobrazovateli [Measuring converters]. (E. Sycheva, Trans.) Moscow: Energoatomizdat.
9 Dzhikayev, G. (2004). Izmeritel’nyye preobrazovateli bol’shikh peremennykh tokov v elektroenergetike [Measuring transducers of high alternating currents in the electric power industry]. Abstract of PhD thesis, Ulyanovsk.
10 Guedes, J., Castoldi, M., Goedtel, A., Cristiano, M., & Sanches, D. (2018). Parameters estimation of three-phase induction motors using differential evolution. Electric Power Systems Research, 154, pp. 204-212. doi:10.1016/j.epsr.2017.08.033
11 Krontiris, E., Hanitch, R., Paralika, M., Rampias, I., Stathais, E., Nabe, A., Badalov, A. (1997–2001). Energy Management Training in Uzbekistan. The final report of the Project EC T JEP–10328 – 97, TSTU, TU, TEI , Tashkent, Berlin, Athens.
12 Nandi, S., Tliyat, H., & Li, X. (2005). Condition Monitoring and Fault Diagnosis of Electrical Motors – A Review. IEEE Transactions on Energy Conversion, 20(4), pp. 719-729. doi:10.1109/TEC.2005.847955
13 Nunez, J. (2016). Real and reactive power control of induction motor drive. LSU Thesis, pp. 93-99. Retrieved from https://digitalcommons.lsu.edu/gradschool_theses/4461
14 Ocak, H., & Loparo, K. (2001). A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. doi:10.1109/ICASSP.2001.940324
15 Putman, R. (2004). Industrial Energy Systems Analysis, Optimization and Control. NY, USA: ASME Press.
16 Siddikov, I., Makhsudov, M., & Boikhanov, Z. (2021). Skhema zameshcheniya i analiz raboty asinkhronnogo dvigatelya pri potreblenii reaktivnoy moshchnosti [Substitution scheme and analysis of the operation of an asynchronous motor with the consumption of reactive power]. Chief Power Engineer(7), pp. 29-30.
17 Siddikov, I., Malikov, A., Makhsudov, M., Boikhanov, Z., & Uzaqov, R. (2022). Study of the static characteristics of the secondary stator voltage converter of the currents of an induction motor. Proceedings of the AIP Conference, 020003, pp. 24-32. doi:10.1063/5.0089681
18 Tabatabaei, N., Aghbolaghi, A., N., B., & Blaabjerg, F. (2017). Reactive Power Control in AC Power Systems (Series Power Systems ed.). Springer. doi:10.1007/978-3-319-51118-4
19 Trzynadlowski, A. (2000). Control of Induction Motors. Academic Press.
20 Zavgorodniy, V., Chuchman, Y., & Voloshanskiy, Y. (1985). Russia Patent No. 1182605.
Waiting