235

Mazkur maqolada polipropilen (PP) va qatlamli silikatlar asosida polimer kompozitsion materiallarning melt mixing usuli orqali olinishi bayon qilingan. Malein angidrid payvandlangan polipropilen (MA-p-PP) kompatibilizator (moslashtirgich) sifatida ishlatildi va kompatibilizator miqdorining qatlamlararo turli xil zichlikdagi modifikator joylashgan ikki turdagi qatlamli silikatlar asosidagi kompozitlarining termik va mexanik xususiyatlariga ta’siri o‘rganildi. Kompozit tarkibidagi to‘ldiruvchi miqdori o‘zgarmas 3 % ni tashkil qilgan holda, kompatibilizator 3, 6, 9 va 12 % gacha o‘zgartirildi. Modifikatorning zichligi yuqoriroq bo‘lgan qatlamli silikat Cloisite15A interkalatsiyalangan tuzilmalarni hosil qildi. Modifikatorning zichligi nisbatan pastroq bo‘lgan Cloisite20A da esa, asosan, eksfoliatsiyalangan nanokompozitlar olishga erishildi. Nanostrukturaning shakllanishi termik barqarorlikning sezilarli darajada o‘sishiga olib keldi (50 % vazn yo‘qotish polipropilen va uning asosidagi nanokompozitlar uchun mos ravishda 360 °C va 430 °C haroratlarda kuzatiladi). Nanokompozitlarning mexanik xususiyatlari tahlili elastiklik modulning 15–20 % ga oshishi va bu ta’sir eksfoliatsiyalangan tuzilmalar uchun yaqqolroq namoyon bo‘lishini ko‘rsatdi. Oquvchan holatga o‘tish kuchlanishi amalda o‘zgarmasdan saqlanib qolgan holda, elastik deformatsiya sezilarli darajada kamaydi.

  • Read count 160
  • Date of publication 14-04-2023
  • Main LanguageO'zbek
  • Pages42-52
Ўзбек

Mazkur maqolada polipropilen (PP) va qatlamli silikatlar asosida polimer kompozitsion materiallarning melt mixing usuli orqali olinishi bayon qilingan. Malein angidrid payvandlangan polipropilen (MA-p-PP) kompatibilizator (moslashtirgich) sifatida ishlatildi va kompatibilizator miqdorining qatlamlararo turli xil zichlikdagi modifikator joylashgan ikki turdagi qatlamli silikatlar asosidagi kompozitlarining termik va mexanik xususiyatlariga ta’siri o‘rganildi. Kompozit tarkibidagi to‘ldiruvchi miqdori o‘zgarmas 3 % ni tashkil qilgan holda, kompatibilizator 3, 6, 9 va 12 % gacha o‘zgartirildi. Modifikatorning zichligi yuqoriroq bo‘lgan qatlamli silikat Cloisite15A interkalatsiyalangan tuzilmalarni hosil qildi. Modifikatorning zichligi nisbatan pastroq bo‘lgan Cloisite20A da esa, asosan, eksfoliatsiyalangan nanokompozitlar olishga erishildi. Nanostrukturaning shakllanishi termik barqarorlikning sezilarli darajada o‘sishiga olib keldi (50 % vazn yo‘qotish polipropilen va uning asosidagi nanokompozitlar uchun mos ravishda 360 °C va 430 °C haroratlarda kuzatiladi). Nanokompozitlarning mexanik xususiyatlari tahlili elastiklik modulning 15–20 % ga oshishi va bu ta’sir eksfoliatsiyalangan tuzilmalar uchun yaqqolroq namoyon bo‘lishini ko‘rsatdi. Oquvchan holatga o‘tish kuchlanishi amalda o‘zgarmasdan saqlanib qolgan holda, elastik deformatsiya sezilarli darajada kamaydi.

Русский

В данной работе полимерные композиционные материалы на основе полипропилена (ПП) и слоистых силикатов получены методом смешения в расплаве. В качестве компатибилизатора использовали полипропилен, привитый малеиновым ангидридом (МА-п-ПП), и изучали влияние количества компатибилизатора на термические и механические свойства композитов на основе двух типов слоистых силикатов с модификаторами различной межслоевой плотности. Компатибилизатор был изменен на 3, 6, 9 и 12 %, в то время как количество наполнителя в композите осталось неизменным на уровне 3 %. Cloisite15A, слоистый силикат с более высокой плотностью модификатора, дает интеркалированные структуры, в то время как Cloisite20A, с относительно более низкой плотностью модификатора, дает в основном расслоенные нанокомпозиты. Формирование наноструктуры привело к значительному увеличению термостойкости (50 % потери массы наблюдается при температурах 360 и 430 °С для полипропилена и нанокомпозитов на его основе соответственно). Анализ механических свойств нанокомпозитов показал, что модуль упругости увеличивается на 15–20 %, причем этот эффект более выражен для расслоенных структур, предел текучести остается практически неизменным, наблюдается значительное снижение упругой деформации

English

In this work, polymer composite materials based on polypropylene (PP) and layered silicates were obtained by melt mixing method. The research looked into the effect of the amount of compatibilizer on thermal and mechanical properties of composites based on two types of layered silicates with modifiers of different interlayer densities, with maleic anhydride grafted polypropylene (MA-p-PP), which was used as a compatibilizer. The compatibilizer was changed to 3, 6, 9 and 12 % while the amount of filler in the composite remained at 3 %. Cloisite15A, a layered silicate with a higher modifier density, produced intercalated structures, while Cloisite20A, with a relatively lower modifier density, produced mostly exfoliated nanocomposites. Forming of the nanostructure led to a significant increase in thermal stability (50 % weight loss was observed at temperatures of 360 and 430 °C for polypropylene and its based nano-composites, respectively). The analysis of the mechanical properties of nanocomposites showed that the elastic modulus increases by 15–20 %, and this effect is more expressive for exfoliated structures, however, the yield stress remains practically unchanged, and a significant decrease in elastic deformation is observed.

Name of reference
1 Bagheri-Kazemabad, S., Fox, D., Chen, Y., Geever, L., Khavandi, A., Bagheri, R., & Chen, B. (2012). Morphology, rheology and mechanical properties of polypropylene/ethylene–octene copolymer/clay nanocomposites: Effects of the compatibilizer. Composites Science and Technology, 72(14), pp. 1697- 1704.
2 Balazs, A., Singh, C., & Zhulina, E. (1998). Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules, 31(23), pp. 8370-8381.
3 Berdinazarov, Q., Khakberdiev, E., Normurodov, N., & Ashurov, N. (2022). Mechanical and thermal degradation properties of isotactic polypropylene composites with Cloisite15A and Cloisite20A. Bulletin of the University of Karaganda, pp. 22-23. doi:10.31489/2022Ch3/3-22-23
4 Cervantes-Uc, J., Cauich-Rodríguez, J., Vázquez-Torres, H., Garfias-Mesías, L., & Paul, D. (2007). Thermal degradation of commercially available organoclays studied by TGA–FTIR. Thermochimica Acta, 457(1-2), pp. 92-102.
5 Chiu, F., Lai, S., Chen, J., & Chu, P. (2004). Combined effects of clay modifications and compatibilizers on the formation and physical properties of melt-mixed polypropylene/clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 42(22), pp. 4139-4150.
6 Dolgov, V., Ashurov, N., Sheveleva, E., & Khakberdiev, E. (2013). Strength-strain, barrier, thermal, and fire-resistance properties of nanocomposites based on linear polyethylene with montmorillonite. Russian Journal of Applied Chemistry(86), pp. 1885-1896.
7 Dong, Y., & Bhattacharyya, D. (2010). Dual role of maleated polypropylene in processing and material characterisation of polypropylene/clay nanocomposites. Materials Science and Engineering, 527(6), pp. 1617-1622.
8 Durmus, A., Woo, M., Kasgöz, A., Macosko, C., & Tsapatsis, M. (2007). Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. European Polymer Journal, 43(9), pp. 3737-3749.
9 Duvall, J., Sellitti, C., Myers, C., Hiltner, A., & Baer, E. (1994). Interfacial effects produced by crystallization of polypropylene with polypropylene-g-maleic anhydride compatibilitzers. Journal of Applied Polymer Science, 52(2), pp. 207-216.
10 Fasihnia, S., Peighambardoust, S., & Peighambardoust, S. (2018). Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application. Journal of Food Processing and Preservation, 42(2), p. e13488.
11 Gabr, M., Okumura, W., Ueda, H., Kuriyama, W., & Uzawa, K. (2015). Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Composites(69), pp. 94-100.
12 Hong, C., Lee, Y., Bae, J., Jho, J., Nam, B., & Hwang, T. (2005). Molecular weight effect of compatibilizer on mechanical properties in polypropylene/clay nanocomposites. Journal of Industrial and Engineering Chemistry, 11(2), pp. 293-296.
13 Hotta, S., & Paul, D. (2004). Nanocomposites formed from linear low density polyethylene and organoclays. Polymer, 45(22), pp. 7639-7654.
14 Kato, M., Usuki, A., Hasegawa, N., Okamoto, H., & Kawasumi, M. (2011). Development and applications of polyolefin–and rubber–clay nanocomposites. Polymer, 43(7), pp. 583-593.
15 Khakberdiev, E., Q.N.u., B., Toshmamatov, D., & Ashurov, N. (2022). Mechanical and morphological properties of poly(vinyl chloride) and linear low-density polyethylene polymer blends Vinyl Addit. Technol.(1). doi:10.1002/vnl.21920
16 Lai, S., Chen, W., & Zhu, X. (2009). Melt mixed compatibilized polypropylene/clay nanocomposites. Composites, 40(6-7), pp. 754-765.
17 Lai, S., Chen, W., & Zhu, X. (2011). Melt mixed compatibilized polypropylene/clay nanocomposites. Journal of Composite Materials, 45(25), pp. 2613-2631.
18 Lee, S., & Kim, J. (2004). Surface modification of clay and its effect on the intercalation behavior of the polymer/clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 42(12), pp. 2367-2372.
19 Lee, S., Kang, I., Doh, G., Kim, W., Kim, J., Yoon, H., & Wu, Q. (2008). Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polymer Letters, 2(11), pp. 78-87.
20 Qin, H., Zhang, S., Zhao, C., Hu, G., & Yang, M. (2005). Flame retardant mechanism of polymer/ clay nanocomposites based on polypropylene. Polymer, 46(19), pp. 8386-8395.
21 Rao, G., Srikanth, I., & Reddy, K. (2021). Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites. Defence Technology, 17(3), pp. 812-820.
22 Reichert, P., Nitz, H., Klinke, S., R., B., Thomann, R., & Mulhaup, R. (2000,). Poly (propylene)/ organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromolecular Materials and Engineering, 275(1), pp. 8-17.
23 Tang, Y., Hu, Y., Song, L., Zong, R., Gui, Z., Chen, Z., & Fan, W. (2003). Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polymer Degradation and Stability, 82(1), pp. 127-131.
24 Tessier, R., Lafranche, E., & Krawczak, P. (2012). Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids. Express Polymer Letters, 6(11).
25 Villaluenga, J., Khayet, M., López-Manchado, M., J.L., V., Seoane, B., & Mengual, J. (2007). Gas transport properties of polypropylene/clay composite membranes. European Polymer Journal(43), pp. 1132-1143.
26 Xie, S., Zhang, S., Wang, F., Liu, H., & Yang, M. (2005). Influence of annealing treatment on the heat distortion temperature of nylon-6/montmorillonite nanocomposites. Polymer Engineering & Science, 45(9), pp. 1247-1253.
27 Zdiri, K., Elamri, A., & Hamdaoui, M. (2017). Advances in thermal and mechanical behaviors of PP/clay nanocomposites. Polymer-plastics Technology and Engineering, 56(8), pp. 824-840.
Waiting