This article explores the applicability of diverse sensor types—such as optical,
magnetic incremental encoder and potentiometric sensors—for controlling the turning angle of
tractor steering wheels, specifically addressing the control challenges faced by semi-mounted cotton
pickers. The discussion encompasses fundamental principles, operational aspects, advantages, and
limitations of turning angle sensors prevalent in the industry. Emphasizing advancements in sensor
technology, the article recommends sensor options for controlling the steering wheel's turning angle,
crucial for enhanced maneuverability and operational efficiency of semi-mounted cotton pickers.
Various sensor types, including optical and magnetic encoders and potentiometers, are evaluated for
their suitability in this context. Optical encoders, for instance, are detailed regarding their ability to
convert rotational movements into digital signals and their classification into incremental and
absolute types. The merits and limitations of each sensor type—such as the narrow control range of
incremental encoders and the advantages of absolute encoders—are systematically analyzed.
Furthermore, the potential use of magnetic encoders, based on the Hall effect, is explored,
highlighting their reliability and suitability for controlling rotation speeds. The article concludes by
recommending sensor options based on their effectiveness in converting turning angles into electrical
signals, offering insights into optimal choices for controlling the tractor's steering wheel angle in
cotton pickers.
This article explores the applicability of diverse sensor types—such as optical,
magnetic incremental encoder and potentiometric sensors—for controlling the turning angle of
tractor steering wheels, specifically addressing the control challenges faced by semi-mounted cotton
pickers. The discussion encompasses fundamental principles, operational aspects, advantages, and
limitations of turning angle sensors prevalent in the industry. Emphasizing advancements in sensor
technology, the article recommends sensor options for controlling the steering wheel's turning angle,
crucial for enhanced maneuverability and operational efficiency of semi-mounted cotton pickers.
Various sensor types, including optical and magnetic encoders and potentiometers, are evaluated for
their suitability in this context. Optical encoders, for instance, are detailed regarding their ability to
convert rotational movements into digital signals and their classification into incremental and
absolute types. The merits and limitations of each sensor type—such as the narrow control range of
incremental encoders and the advantages of absolute encoders—are systematically analyzed.
Furthermore, the potential use of magnetic encoders, based on the Hall effect, is explored,
highlighting their reliability and suitability for controlling rotation speeds. The article concludes by
recommending sensor options based on their effectiveness in converting turning angles into electrical
signals, offering insights into optimal choices for controlling the tractor's steering wheel angle in
cotton pickers.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Uljaev E.. | DSc, Professor | Tashkent State Technical University |
2 | Ubaydullaev U.. | PhD, Assistant Professor | Tashkent State Technical University |
№ | Name of reference |
---|---|
1 | 1. Matchanov, R., Rizayev, A., Astanakulov, K., Tolibaev, A., & Karimov, N. (2021). Combined cotton picker with interchangeable devices. IOP Conference Series: Earth and Environmental Science, 677, 052021. https://doi.org/10.1088/1755-1315/677/5/052021 |
2 | 2. Uljaev, E. U., & Ubaydullaev, U. M. (2018). Cotton picker’s spindle speed control by measuring sensoe frequency. Chemical Technology, Control and Management, 2018(2), 37–42. |
3 | 3. Khanpara, B., & Kathiria, R. (2023). Development and performance evaluation of picking mechanism for knapsack cotton picker. INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES, 19, 145–152. https://doi.org/10.15740/HAS/IJAS/19.1/145-152 |
4 | 4. Эркин Улжаев, Уткиржон Убайдуллаев, Султонбек Эркинов, & Собир Шеркобилов. (2014). Автоматизированное устройство контроля забои давления воздуха в пневмотранспортной камере хлопкоуборочной машины. In Сборник материалов международной научно-технической конференции на тему: “Современные материалы, техника и технологии в машиностроении” 19-20 апреля 2014 года. Том-1. Андижан. |
5 | 5. Uljayev, E., Ravutov, S. T., & Ubaydullayev, U. M. (2020). Remote control device to control the contact uniformity of the brush strippers on the spindle’s surface of the cotton picking apparatus. In IOP Conference Series: Earth and Environmental Science (Vol. 614, p. 012139). IOP Publishing. |
6 | 6. Chen, H., Wang, M., Ni, X., Cai, W., Zhong, C., Ye, H., … Lin, Y. (2023). Design of Hydrostatic Power Shift Compound Drive System for Cotton Picker Experiment. Agriculture, 13, 1591. https://doi.org/10.3390/agriculture13081591 |
7 | 7. Liu, Z., & Zhang, L. (2020). A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings. Measurement, 149, |
8 | 8. Bertolotti, F., Sbonnik, S., & Sumbeck, T. (2014, September 9). Angular position encoder for a rotating shaft. |
9 | 9. Ulzhayev, E., Ubaydullayev, U. M., & Ulzhayev, Z. E. (2014). Electronic on-board control system of operational and technological parameters of cotton harvesting units. Traktory i sel hozmashiny, 81(10), 11–14. |
10 | 10. Barros, T., Lins, I., & Moura, M. (2023). Deep Learning Models Applied to Intelligent Diagnosis of Rotating Machines. |
11 | 11. Liu, Y., Chen, B., & Chang, J. (2015). Development of polarity-changeable magnetizer for manufacturing coding patterns in rotary encoder. https://doi.org/10.1109/INTMAG.2015.7157742 |
12 | 12. Улжаев, Э., Убайдуллаев, У., & Абдулхамидов, А. (2021). Выбор способов и датчиков контроля изменения ширины между перемещающими объектов. InterConf. |
13 | 13. Gao, X., & Zhang, X. (2022). A Multivector Variable Area Type Capacitive Angular Displacement Encoder Based on a Rotating Electric Field and Improvement of Its Demodulation Method. IEEE Sensors Journal, PP, 1–1. https://doi.org/10.1109/JSEN.2022.3200099 |
14 | 14. Абдазимов, А. Д., Улжаев, Э., Убайдуллаев, У. М., & Омонов, Н. Н. (2014). Основы автоматизации контроля и управления технологическими параметрами хлопкоуборочных машин. Ташкент: ТашГТУ. |
15 | 15. Эркин Улжаев, Уткиржон Убайдуллаев, & Тоштемир Авезов. (2014). Микропроцессорное устройство контроля угла поворота ведущего колеса сельхозмашин. In Сборник материалов международной научно-технической конференции на тему: “Современные материалы, техника и технологии в машиностроении” 19-20 апреля 2014 года. Том-1. Presented at the Сборник материалов международной научно-технической конференции на тему: “Современные материалы, техника и технологии в машиностроении” 19-20 апреля 2014 года. Том-1., Андижан. |
16 | 16. Ellin, A., & Dolsak, G. (2008). The design and application of rotary encoders. Sensor Review, 28, 150– 158. https://doi.org/10.1108/02602280810856723 |
17 | 17. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1), 314–334. https://doi.org/10.1016/j.ymssp.2013.06.004 |