45

Yuzni tanib olish texnologiyalari sezilarli darajada rivojlanib, fotosuratlar va videolardagi asosiy identifikatsiya va tekshirish jarayonlaridan turli sohalarda, jumladan, xavfsizlik va sog‘liqni saqlashda foydalanilmoqda. Chuqur o‘rganish usullarining paydo bo‘lishi bilan mashinalarning yuz ifodalarini tanib olish va tahlil qilish qobiliyati an’anaviy usullardan ko‘ra samarali ekanligi aniqlandi. Maqolada konvolyutsion neyron tarmoqlari va chuqur o‘rganish metodologiyalari imkoniyatlaridan foydalangan holda yuz hissiyotlarini aniqlashni samarali metodlari ko‘rib chiqiladi. Keltirilgan muammoni hal etish orqali biz chuqur o‘rganish usullaridan nafaqat yuzni aniqlash tizimlarini yaxshilash, balki inson va kompyuter o‘rtasidagi o‘zaro ta’siri sohasidagi yutuqlarga sezilarli hissa qo‘shish uchun qanday foydalanish mumkinligi haqida ma’lumot beriladi.

  • Read count 45
  • Date of publication 02-08-2024
  • Main LanguageO'zbek
  • Pages68-76
Ўзбек

Yuzni tanib olish texnologiyalari sezilarli darajada rivojlanib, fotosuratlar va videolardagi asosiy identifikatsiya va tekshirish jarayonlaridan turli sohalarda, jumladan, xavfsizlik va sog‘liqni saqlashda foydalanilmoqda. Chuqur o‘rganish usullarining paydo bo‘lishi bilan mashinalarning yuz ifodalarini tanib olish va tahlil qilish qobiliyati an’anaviy usullardan ko‘ra samarali ekanligi aniqlandi. Maqolada konvolyutsion neyron tarmoqlari va chuqur o‘rganish metodologiyalari imkoniyatlaridan foydalangan holda yuz hissiyotlarini aniqlashni samarali metodlari ko‘rib chiqiladi. Keltirilgan muammoni hal etish orqali biz chuqur o‘rganish usullaridan nafaqat yuzni aniqlash tizimlarini yaxshilash, balki inson va kompyuter o‘rtasidagi o‘zaro ta’siri sohasidagi yutuqlarga sezilarli hissa qo‘shish uchun qanday foydalanish mumkinligi haqida ma’lumot beriladi.

English

This article reviews effective facial emotion recognition methods using convolutional neural networks and deep learning methodologies. While we cover the ins and outs of building and training a convolutional neural network, we try to provide readers with a thorough understanding of the underlying technologies and their applications in real-time facial emotion recognition. By addressing the problem presented in this paper, we provide insight into how deep learning techniques can be used not only to improve facial recognition systems, but also to significantly contribute to advances in human-computer interaction.

Русский

В статье рассматриваются эффективные методы распознавания эмоций по лицу с использованием сверточных нейронных сетей и методологий глубокого обучения. Раскрывая все тонкости построения и обучения сверточной нейронной сети, мы пытаемся предоставить читателям глубокое понимание основных технологий и их применения в распознавании эмоций лица в реальном времени. Решая проблему, представленную в этой статье, мы даем представление о том, как методы глубокого обучения можно использовать не только для улучшения систем распознавания лиц, но и внести значительный вклад в развитие взаимодействия человека и компьютера.

Author name position Name of organisation
1 Kurbanov A.. Dotsent Mirzo Ulug'bek nomidagi O'zbekiston Milliy universiteti Djizzax filiali
Name of reference
1 Jason Brownlee, A Gentle Introduction to Deep Learning for Face Recognition, on July 5, 2019 in Deep Learning for Computer Vision
2 David Clinton, Understanding Facial Recognition with Deep Learning, https://blog.paperspace.com/facial-recognition-with-deep-learning/
3 R. Ranjan et al., "Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans," in IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 66-83, Jan. 2018, doi: 10.1109/MSP.2017.2764116
4 Lu X (2022) Deep Learning Based Emotion Recognition and Visualization of Figural Representation. Front. Psychol. 12:818833. doi: 10.3389/fpsyg.2021.818833
5 Stanislav Kutnyk, Improve AI Facial Recognition Accuracy Using Deep Learning
6 Wafa Mellouk, Wahida Handouzi, Facial emotion recognition using deep learning: review and insights, Procedia Computer Science Volume 175, 2020, Pages 689-694
7 Guodong Guo, Na Zhang, A survey on deep learning based face recognition, Computer Vision and Image Understanding, Volume 189, December 2019, 102805, https://doi.org/10.1016/j.cviu.2019.102805
8 Huang, ZY., Chiang, CC., Chen, JH. et al. A study on computer vision for facial emotion recognition. Sci Rep 13, 8425 (2023). https://doi.org/10.1038/s41598-023-35446-4
9 Ekman, P. (2016). What Scientists Who Study Emotion Agree About. Perspectives on Psychological Science, 11(1), 31-34
10 Rasmussen, S.H.R., Ludeke, S.G. & Klemmensen, R. Using deep learning to predict ideology from facial photographs: expressions, beauty, and extra-facial information. Sci Rep 13, 5257 (2023). https://doi.org/10.1038/s41598-023-31796-1
11 B, R.T., D, M., Duvva, L. et al. Deep Learning Feature Extraction Architectures for Real-Time Face Detection. SN COMPUT. SCI. 4, 645 (2023). https://doi.org/10.1007/s42979-023-02023-5
12 Bian, Y.; Küster, D.; Liu, H.; Krumhuber, E.G. Understanding Naturalistic Facial Expressions with Deep Learning and Multimodal Large Language Models. Sensors 2024, 24, 126. https://doi.org/10.3390/s24010126
13 Ko BC. A Brief Review of Facial Emotion Recognition Based on Visual Information. Sensors (Basel). 2018 Jan 30;18(2):401. doi: 10.3390/s18020401. PMID: 29385749; PMCID: PMC5856145
14 Onyema EM, Shukla PK, Dalal S, Mathur MN, Zakariah M, Tiwari B. Enhancement of Patient Facial Recognition through Deep Learning Algorithm: ConvNet. J Healthc Eng. 2021 Dec 6;2021:5196000. doi: 10.1155/2021/5196000. PMID: 34912534; PMCID: PMC8668299
15 Gupta, S., Kumar, P. & Tekchandani, R.K. Facial emotion recognition based real-time learner engagement detection system in online learning context using deep learning models. Multimed Tools Appl 82, 11365–11394 (2023). https://doi.org/10.1007/s11042-022-13558-9
16 Mazher Iqbal, J.L.; Senthil Kumar, M.; Mishra Geetishree ; Asha, G.R.; Saritha, Karthik, A; J.V.N.; BonthuKotaiah, N. (2023). Facial emotion recognition using geometrical features based deep learning techniques, International Journal of Computers Communications & Control, 18(4), 4644, 2023. DOI: 10.15837/ijccc.2023.4.4644
17 Jeong, D.; Kim, B.-G.; Dong, S.-Y. Deep Joint Spatiotemporal Network (DJSTN) for Efficient Facial Expression Recognition. Sensors 2020, 20, 1936. https://doi.org/10.3390/s20071936
18 Mukeshimana M, Niyongere A, Ndikumagenge J. Facial Emotion Recognition Feature Extraction: A Survey [Internet]. Emotion Recognition - Recent Advances, New Perspectives and Applications. IntechOpen; 2023. Available from: http://dx.doi.org/ 10.5772/intechopen.110597
19 Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. In: Proceedings of the Fifth European Conference on Computer Vision (ECCV’98). Vol. 1407. Freiburg, Germany: LNCS; 1998. pp. 484-498
20 Kurbanov Abdurahmon. AI models of affective computing. / International Conference of Contemporary Scientific and Technical Research. 2023
21 Kurbanov Abdurahmon Alishboyevich. Using affective computing systems in modern education. // Journal Science and innovation. 2023.
Waiting