Antioxidants sourced from nature play a pivotal role in maintaining human health.
Enzymatic antioxidants like catalase and peroxidase, alongside high-molecular-weight non-enzymatic
antioxidants such as albumin and ferritin, bolster cellular defense mechanisms. Phenolic compounds,
plentiful in plants, act as antioxidants and fall into different categories like phenolic acids, flavonoids,
tannins, lignans, and lignin. These compounds showcase antioxidant prowess by neutralizing free
radicals and binding metals, with their efficacy influenced by structural nuances and environmental
factors. Moreover, flavonoids, tannins, lignans, diterpenes, and carotenoids stand out for their
antioxidant prowess. Carotenoids like lycopene, present in tomatoes, display notable antioxidant
potency, contributing to health advantages like mitigated disease risks. Additionally, tocopherols
(vitamin E) and ascorbic acid (vitamin C) demonstrate antioxidant properties, shielding against lipid
oxidation and providing supplementary health perks. The diverse range of natural antioxidants found
in plants underscores their significance in fostering health and combating ailments linked to oxidative
stress.
Antioxidants sourced from nature play a pivotal role in maintaining human health.
Enzymatic antioxidants like catalase and peroxidase, alongside high-molecular-weight non-enzymatic
antioxidants such as albumin and ferritin, bolster cellular defense mechanisms. Phenolic compounds,
plentiful in plants, act as antioxidants and fall into different categories like phenolic acids, flavonoids,
tannins, lignans, and lignin. These compounds showcase antioxidant prowess by neutralizing free
radicals and binding metals, with their efficacy influenced by structural nuances and environmental
factors. Moreover, flavonoids, tannins, lignans, diterpenes, and carotenoids stand out for their
antioxidant prowess. Carotenoids like lycopene, present in tomatoes, display notable antioxidant
potency, contributing to health advantages like mitigated disease risks. Additionally, tocopherols
(vitamin E) and ascorbic acid (vitamin C) demonstrate antioxidant properties, shielding against lipid
oxidation and providing supplementary health perks. The diverse range of natural antioxidants found
in plants underscores their significance in fostering health and combating ailments linked to oxidative
stress.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Zufarov O.. | PhD, | Fat and oil industry enterprises |
2 | Serkayev K.. | DSc, | Tashkent Institute of Chemical Technology, Tashkent city |
№ | Name of reference |
---|---|
1 | 1. Zufarov, O., Serkayev, K. (2024). Antioxidants. CAFET. Central Asian Food Engineering and Technology.Vol.2, Issue 1. 9-13. |
2 | 2. Caleja, C., Ribeiro, A., Barreiro, M., Ferreira, F. (2017). Phenolic compounds as nutraceuticals or functional food ingredients, Current Pharmaceutical Design., 23, 2787 3. Durazzo, A., Caiazzo, E., Lucarini, M., Cicala, C., Izzo, A., Novellino E., Santini, A. (2019) Polyphenols: a concise overview on the chemistry, occurrence, and human health, Phytotherapy Research., 33, 2221–2243 4. Soto, L., Falqué, E., Domínguez, H. (2015). Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics, Cosmetics, 259– 276 |
3 | 5. Domínguez-Avila, A., Wall-Medrano, A., Velderrain-Rodríguez, G., Chen, C., Salazar-López, N., Robles-Sánchez, M., González-Aguilar, A. (2017). Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds, FOOD FUNCT Journal., 8, 15–38 RSC . 7. Carocho, M., Morales, P., Ferreira, R. (2015). Natural food additives. Trends in Food Science & Technology., 45, 284–295. 8. Mark, R., Lyu, X., Lee, L., Parra-Saldívar, R., Chen, W. (2019). Sustainable production of natural phenolics for functional food applications, Journal of Functional Foods, 57, 233–254. |
4 | 9. Zhang, J., Hu W, Wang,P., Ding, Y., Wang, H., Kang, X. (2022). Research progress on targeted antioxidant therapy and vitiligo. Oxidative Medicine and Cellular Longevity. 2022:1–10. https://doi.org/10.1155/2022/1821780. 10. Lyu, C., Sun, Y. (2022). Immunometabolism in the pathogenesis of vitiligo. Frontiers Immunology. 13:1055958. https://doi.org/10.3389/fimmu.2022.1055958. 11. Lenucci, M.S., Tornese, R., Mita, G., Durante, M. (2022). Bioactive Compounds and Antioxidant Activities in Different Fractions of Mango Fruits (Mangifera indica L., Cultivar Tommy Atkins and Keitt). Antioxidants 11, 484. |
5 | 12. Costanzo, G., Vitale, E., Iesce, M.R., Naviglio, D., Amoresano, A., Fontanarosa, C., Spinelli, M., Ciaravolo, M., Arena, C. (2022). Antioxidant Properties of Pulp, Peel and Seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at Different Stages of Fruit Ripening. Antioxidants, 11, 187. 13. Fan, S., Li, Q., Feng, S., Lei, Q., Abbas, F., Zhu, X., Yao, Y., Chen, W., Li, X. (2022). Melatonin Maintains Fruit Quality and Reduces Anthracnose in Postharvest Papaya via Enhancement of Antioxidants and Inhibition of Pathogen Development. Antioxidants, 11, 804-812. 14. Ahmadi, H., Morshedloo, M.R., Emrahi, R., Javanmard, A., Rasouli, F., Maggi, F., Kumar, M., Lorenzo, J.M. (2022). Introducing Three New FruitScented Mints to Farmlands: Insights on Drug Yield, Essential-Oil Quality, and Antioxidant Properties. Antioxidants, 11, 866-897. |
6 | 15. Faheem, F., Liu, Z.W., Rabail, R., Haq, I.U., Gul, M., Bryła, M., Roszko, M., Kieliszek, M., Din, A., Aadil, R.M. (2022). Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants, 11, 720-731. 16. Quan, V. Vo., Nguyen, T., Le, Hieue., M. Bayf., N. Thong., T, Huyen., N, Hoaj., A, Mechler. (2020). The antioxidant activity of natural diterpenes: theoretical insights. Royal Society of Chemistry.10. 14937-14943. DOI: 10.1039/D0RA02681F. 17. Melendez-Martinez, A., Stinco, C., Liu, C., Wang, X. (2013). A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chemistry. 138, 1341–1350. 18. Murkovic, M., Mulleder, U.M., Neunteuf, H. (2002). Carotenoid Content in Different Varieties of Pumpkins. Journal of Food Composition and Analysis15, 633–638. |
7 | 19. De Carvalho, L.M.J., Barros Gomes, P., De Oliveira Godoy, R.L., Pacheco, S., Fernandes do Monte, P.H., De Carvalho, J.L.V., Nutti, M.R., Lima Neves, A.C., Rodrigues Alves Vieira, A.C., Ramalho Ramos, S.R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 47, 337–340. 20. Hussain, A., Kausar, T., Din, A., Murtaza, A., Jamil, M.A., Noreen, S., Rehman, R., Shabbir, H., Ramzan, M.A. (2021). Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). Journal of Food Processing and Preservation., 45, e15542. 21. Kreck, M., Kürbel, P., Ludwig, M., Paschold, P.J., Dietrich, H. (2006). Identification and quantification of carotenoids in pumpkin cultivars (Cucurbita maxima L.) and their juices by liquid chromatography with ultravioletdiode array detection. Journal of Applied Botany and Food Quality 80, 93–99. |
8 | 22. Borel, P., Desmarchelier, C., Nowicki, M., Bott, R. (2015). Lycopene Bioavailability Is Associated with a Combination of Genetic Variants. Free Radical Biology and Medicine 83, 238–244. 23. Srivastava, S., Srivastava, A.K. Lycopene. (2015). Chemistry, Biosynthesis, Metabolism and Degradation under Various Abiotic Parameters. Journal of Food Science and Technology. 52, 41–53. 24. Van Steenwijk, H.P., Bast, A., De Boer, A. (2020). The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules, 25, 4378. 25. Petyaev, I.M. (2016). Lycopene Deficiency in Ageing and Cardiovascular Disease. Oxidative Medicine and Cellular Longevity 3218605. |
9 | 26. Doyle, L.M. (2020). Lycopene: Implications for Human Health–A Review. Adv. Advances in Food Technology and Nutritional Sciences. 6, 1–12. 27. Wu, S., Guo, X., Shang, J., Li, Y., Dong, W., Peng, Q., Xie, Z., Chen, C. (2022). Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. Oxidative Medicine and Cellular Longevity 9309327. 28. Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K., Yalçın, E., Yapar, K. Lycopene. (2023). An Antioxidant Product Reducing Dithane Toxicity in Allium cepa L. Sci. Rep. 13, 2290. 29. Wang, Y.-H., Zhang, R.-R., Yin, Y., Tan, G.-F., Wang, G.-L., Liu, H., Zhuang, J., Zhang, J., Zhuang, F.-Y., Xiong, A.-S. (2023). Advances in Engineering the Production of the Natural Red Pigment Lycopene: A Systematic Review from a Biotechnology Perspective. Journal of Advanced Research. 46, 31–47. |
10 | 30. Diego, J., G ́omez C., Iba ̃nezb E., Rup ́ereza, J., Barbasa, C. (2004). Tocopherol measurement in edible products of vegetable origin. Journal of Chromatography A, 1054, 1, с. 227-233. 31. Maret G., Traber J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43, 1, p. 4-15. 32. Filip, V., Plocková, M., Šmidrkal, J., Špičková, Z., Melzoch, K., Schmidt, Š. (2003). Resveratrol and its antioxidant and antimicrobial effectiveness. Food Chemistry,83, p. 585-593. |
11 | 33. Bramley, P. M., Elmadfa, I., Kafatos, A., Kelly, F. J., Manios, Y. (2000) Vitamin E –review. Journal of the Food Science and Agriculture, 80, p. 913-938. 34. Wettasinghe, M., Shahidi, F. (1999). Antioxidant and free radical - scavenging properties of ethanolic extracts of defatted borage (Borago officinalis) seeds. Food Chemistry, 67, p. 399-414. 35. Zufarov, O., Serkayev. K. (2024). Sources of natural antioxidants. CAFET. Central Asian Food Engineering and Technology.Vol.2., Issue 1. 2024. p.4-8. |