The article elucidates research into a prediction approach which is based on machine learning algorithms for selecting types of crops that can be planted for forthcoming seasons, in accordance with climatic conditions in agriculture of a certain region. The research investigated the main mathematical core, basic concept and hyper-parameters of the algorithms designed for creating an AI model, analyzed individual models using the dataset selected for the research, and retrieved required findings. The findings were compared with results of other algorithms based on a number of indicators including F1-score, Recall, Accuracy. While studying the classification algorithms, they were considered in terms of efficacy – as to what kind of problems the algorithms would be most effective for; and the article provided specific comments on this issue. The software was developed in the Python programming language in view to ensure clear visualization of the comparative analysis of the research findings. As well as, the results section contains graphical figure of each input/output attributes’ relationship.
The article elucidates research into a prediction approach which is based on machine learning algorithms for selecting types of crops that can be planted for forthcoming seasons, in accordance with climatic conditions in agriculture of a certain region. The research investigated the main mathematical core, basic concept and hyper-parameters of the algorithms designed for creating an AI model, analyzed individual models using the dataset selected for the research, and retrieved required findings. The findings were compared with results of other algorithms based on a number of indicators including F1-score, Recall, Accuracy. While studying the classification algorithms, they were considered in terms of efficacy – as to what kind of problems the algorithms would be most effective for; and the article provided specific comments on this issue. The software was developed in the Python programming language in view to ensure clear visualization of the comparative analysis of the research findings. As well as, the results section contains graphical figure of each input/output attributes’ relationship.
Ushbu maqolada qishloq xo‘jaligida hududlar va iqlim sharoitidan kelib chiqqan holda, keyingi mavsum uchun ekilishi mumkin bo‘lgan ekin turini tanlashda ko‘maklashuvchi tizim ishlab chiqish maqsadida mashinali o‘qitish algoritmlari asosida bashorat qilish yondashuvi bo‘yicha tadqiqot olib borilganligi va uning natijalari o‘z aksini topgan. Tadqiqot davomida sun’iy intellekt modelini yaratish algoritmlarining asosiy matematik mohiyati, asosiy tushunchasi va giperparametrlari o‘rganilib, tadqiqot uchun tanlangan ma’lumotlar to‘plamidan foydalangan holda, har bir model tahlil qilindi va kerakli natijalar olindi. Olingan natijalar F1-reyting, Recall, Accuracy kabi bir qator metrik ko‘rsatkichlar bo‘yicha boshqa algoritmlar natijalari bilan taqqoslandi. Tasniflash algoritmlarini o‘rganish jarayonida ushbu algoritmlarning qanday masalalar uchun eng samarali ekanligi ham ko‘rib chiqildi hamda maqolada bu yo‘nalishda aniq sharhlar keltirildi. Tadqiqot natijalarining taqqoslashlar tahlillari aniq vizualizatsiya bo‘lishi maqsadida Python dasturlash tilida dasturiy ta’minot ishlab chiqildi. Qolaversa, natijalar bo‘limida har bir kirish va chiqish atributi o‘rtasidagi bog‘liqlik grafik ko‘rinishida ifodalandi.
В данной статье отражены исследования подхода прогнозирования в сельском хозяйстве на основе алгоритмов машинного обучения для выбора вида посева на следующий сезон в разрезе регионов и соответствующих климатических условий, а также его результаты. В ходе исследования были изучены основная математическая сущность, базовая концепция и гиперпараметры алгоритмов создания модели искусственного интеллекта, каждая модель проанализирована с использованием выбранного для исследования набора данных, получены необходимые результаты. Полученные результаты сравнивались с результатами других алгоритмов на основе ряда показателей, таких как F1-score, Recall, Accuracy. В процессе изучения алгоритмов классификации также рассматривалось, для каких задач эти алгоритмы наиболее эффективны, и в статье даны конкретные комментарии по этому направлению. Программное обеспечение было разработано на языке программирования Python с целью обеспечения наглядной визуализации сравнительного анализа результатов исследования. В разделе результатов графически представлена связь между каждым входным и выходным атрибутом.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Raximov N.O. | texnika fanlari doktori, dotsent, kafedra mudiri | Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti “Axborot texnologiyalarining dasturiy ta’minoti” kafedras |
2 | Xasanov D.R. | tayanch doktorant | Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti “Axborot texnologiyalarining dasturiy ta’minoti” kafedras |
№ | Name of reference |
---|---|
1 | Kuradusenge, M., Hitimana, E., Hanyurwimfura, D., Rukundo, P., Mtonga, K., Mukasine, A., Uwitonze, C., Ngabonziza, J., & Uwamahoro, A. (2023). Crop yield prediction using machine learning models: case of irish potato and maize. Agriculture, 13, 225. www.mdpi.com/2077-0472/13/1/225 |
2 | Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., Shdefat, A., & Saker, L. (2023). Crop prediction model using machine learning algorithms. Appl. Sci., 13, 9288. doi:10.3390/app13169288. |
3 | Tawseef, A.S., Tabasum, R., & Faisal, R.L. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric., 198, 107119. |
4 | Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction. IEEE Access,9. 63406–63439. doi: 10.1109/ACCESS.2021.3075159 |
5 | Evgeniou, T., & Pontil, M. (2001). Support Vector Machines: Theory and Applications. In G. Paliouras, V. Karkaletsis, C. D. Spyropoulos (Eds.) Machine Learning and Its Applications. ACAI 1999. Lecture Notes in Computer Science (vol. 2049). Springer, Berlin, Heidelberg. doi:10.1007/3-540-44673-7_12 |
6 | Zhang, Y. (2012). Support Vector Machine Classification Algorithm and its Application. In Information Computing and Applications (ICICA 2012). Communications in Computer and Information Science, 308. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-34041-3_27 |
7 | Raximov, N., Kuvandikov, J., & Khasanov, D. (2022). The importance of loss function in artificial intelligence. Proceedings of the International Conference on Information Science and Communications Technologies (ICISCT 2022). doi:10.1109/ICISCT55600.2022.10146883 |
8 | Rahimov, N., & Khasanov, D. (2022). The mathematical essence of logistic regression for machine learning. Computer Science and Engineering Technologies. Proceedings of the International scientific and technical conference (2022, October 14-15). doi:10.5281/zenodo.7239169 |
9 | Khasanov D., Tojiyev M., & Primqulov, O. Gradient descent in machine. Proceedings of the International Conference on Information Science and Communications Technologies (ICISCT). https://ieeexplore.ieee.org/ document/9670169 |
10 | Shai Sh.-Sh., & Shai B.-D. (2014). Understanding Machine Learning (pp. 46–85). Cambridge University press. |
11 | James, G., Witten, D. Hastie, T., & Tibshirani, R. (Eds.). (2013). An introduction to statistical learning: with applications in R. NY: Springer New York. doi:10.1007/978-1-4614-7138-7 |
12 | Hastie, T., Tibshirani, R., & Friedman, J.H. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). NY: New York Springer. |
13 | Theobald, O. (2017). Machine learning for absolute beginners (pp. 43-98). Scatterplot Press. |
14 | Tojiyev, M., Primqulov, O., & Xasanov, D. (2020). Image segmentation in OpenCV and Python. Academicia: an International Multidisciplinary Research Journal, 10 (12), 332–336. doi:10.5958/2249-7137.2020.01735.8 |
15 | Raximov, N., Primqulov, O., & Daminova, B. (2021). Basic concepts and stages of research development on artificial intelligence. Proceedings of the International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1–4). doi:10.1109/ICISCT52966.2021.9670085 |
16 | Kelleher, J. D., Mac Namee, B., & D’Arcy, A. (2015). Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (pp. 16–102). Cambridge, Massachusetts London, England: the MIT Press. https://www.academia.edu/83021908/Fundamentals_of_Machine_Learning_for_ Predictive_Data_Analytics_Algorithms_Worked_Examples_and_Case_Studies |
17 | Tojiyev, M., Shirinboyev, R., & Bobolov, J. (2023). Image segmentation by otsu method. International Journal of Contemporary Scientific and Technical Research, spec. iss., 64–72. https://zenodo.org/record/7630893 |
18 | Raximov, N., Doshchanova, M., Primqulov, O., & Quvondikov, J. (2022). Development of architecture of intellectual information system supporting decision-making for health of sportsmen. Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). |
19 | Biswas, P. (2021). Loss Function in Deep Learning and Python Implementation. http://www. towardsdatascience.com |
20 | Kumar, R., Singh, M., Kumar, P., & Singh, J. P. (2015). Crop selection method to maximize crop yield rate using machine learning technique. Proceedings of the 2015 International Conference on Smart technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). IEEE. |
21 | Agalave, H., Mahavidyalaya, S., & Maharashtra M.N. (2017, January). Effect of environmental factors on productivity of crop. International Journal of Botany Studies, 2 (1), 14–16. |
22 | Irmak, A., Jones, J., Batchelor, W., Irmak, S., Boote, K., & Paz, P. (2006). Artificial neural network model as a data analysis tool in precision farming. TASABE, 49 (6). |
23 | Deshmukh, T., Rajawat, A., Goyal, S. B., Kumar, J., & Potgantwar, A. (2023). Analysis of machine learning technique for crop selection and prediction of crop cultivation. Proceedings of the 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 298–311). Lalitpur, Nepal. doi:10.1109/ ICICT57646.2023.10134371 |
24 | Walker, S. M. (n.d.). What is a support vector machine? http://www.klu.ai/glossary/support-vectormachines |
25 | Chitrakumari. (2022). Smart Agricultural Production Optimizing Engine. Smart Agriculture is being improved by the Artificial Intelligence (AI). www.kaggle.com/datasets/chitrakumari25/smart-agriculturalproduction-optimizing-engine |
26 | Dean, J. (2020, February 16–20). The deep learning revolution and its implications for computer architecture and chip design. Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA. |
27 | Saini, A. (2022, Aug 26). An introduction to random forest algorithm for beginners. In Data Science Blogathon. https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-random-forest-algorithm-forbeginners/# |
28 | Yehoshua, R. (2023, Mar 25). Random forests. https://medium.com/@roiyeho/random-forests98892261dc49 |