Abstract. In order to study climate change impacts on the regional scale, meteorological data on a virtually continuous spatial scale is required. In this paper were applied a simple linear scaling bias correction method to adjust maximum and minimum temperature data in 2000, 2010 and 2018. The results show that linear scaling bias correction works better in plain areas than in mountain areas if the elevation effect is not taken into consideration. However, the adjustment is done in five of six points successfully.
Abstract. In order to study climate change impacts on the regional scale, meteorological data on a virtually continuous spatial scale is required. In this paper were applied a simple linear scaling bias correction method to adjust maximum and minimum temperature data in 2000, 2010 and 2018. The results show that linear scaling bias correction works better in plain areas than in mountain areas if the elevation effect is not taken into consideration. However, the adjustment is done in five of six points successfully.
Annotatsiya. Iqlim o'zgarishining mintaqaviy miqyosdagi ta'sirini o'rganish uchun uzluksiz fazoviy meteorologik ma'lumotlar talab qilinadi. Ushbu maqolada 2000, 2010 va 2018-yillarda maksimal va minimal havo harorati ma'lumotlarini sozlash uchun oddiy chiziqli to'g'rilash usuli qo'llanilgan. Natijalar shuni ko'rsatadiki, agar balandlik effekti hisobga olinmasa, tog'li hududlarga qaraganda tekislikdagi joylarida to`g`irlash samarali natija beradi. Shunga qaramasdan, to`g`irlash oltita nuqtadan beshtasida muvaffaqiyatli amalga oshirildi.
Аннотация. Для изучения последствий изменения климата в региональном масштабе тре буются метеорологические данные в практически непрерывном пространственном масштабе. В этой статье был применен простой метод линейной коррекции для корректировки данных о максимальной и минимальной температуре в 2000, 2010 и 2018 годах. Результаты показывают, что линейная коррекция работает лучше в равнинных районах, чем в горных районах, если не при нимать во внимание влияние высоты. Однако, в пяти из шести пунктов корректировка успешно выполнено.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Makhliyo N.. | Basical doctorant | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University, |
2 | Bakhtiyor P.. | Doctor of technical science | Research Institute of Environment and Nature Conservation Technologies |
№ | Name of reference |
---|---|
1 | 1. Cao, W., Hu, J. X. and Yu, X. (2009) ‘A study on temperature interpolation methods based on GIS’, 2009 17th International Conference on Geoinformatics, Geoinformatics 2009. doi: 10.1109/ GEOINFORMATICS.2009.5293422 |
2 | 2. Erdanaev, E. et al. (2015) ‘Short Review of Climate and Land Use change Impact on Land Degradation in Tashkent Province.’, International Journal of Geoinformatics. doi: 10.52939/IJG.V11I4.909. |
3 | 3. Gafforov, K. S. et al. (2020) ‘The assessment of climate change on rainfall-runoff erosivity in the Chirchik-Akhangaran Basin, Uzbekistan’, Sustainability (Switzerland), 12(8), p. 3369. doi: 10.3390/ SU12083369. |
4 | 4. Graham, L. P., Andreáasson, J. and Carlsson, B. (2007) ‘Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the Lule River basin’, Climatic Change 2007 81:1, 81(1), pp. 293–307. doi: 10.1007/S10584-006-9215-2. |
5 | 5. Hawkins, E. et al. (2013) ‘Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe’, Agricultural and Forest Meteorology, 170, pp. 19–31. doi: 10.1016/J. AGRFORMET.2012.04.007. |
6 | 6. Lenderink, G., Buishand, A. and Van Deursen, W. (2007) ‘Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach’, Hydrology and Earth System Sciences, 11(3), pp. 1145–1159. doi: 10.5194/HESS-11-1145-2007. |
7 | 7. Navarro-Racines, C. et al. (2020) ‘High-resolution and bias-corrected CMIP5 projections for climate change impact assessments’, Scientific Data 2020 7:1, 7(1), pp. 1–14. doi: 10.1038/s41597-019-0343 |
8 | 8. Shrestha, M., Acharya, S. C. and Shrestha, P. K. (2017) ‘Bias correction of climate models for hydrological modelling – are simple methods still useful?’, Meteorological Applications, 24(3), pp. 531–539. doi: 10.1002/MET.1655. |
9 | 9. Soriano, E., Mediero, L. and Garijo, C. (2019) ‘Selection of bias correction methods to assess the impact of climate change on flood frequency curves’, Water (Switzerland), 11(11). doi: 10.3390/w11112266. |
10 | 10. Teutschbein, C. and Seibert, J. (2012) ‘Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods’, Journal of Hydrology, 456–457, pp. 12–29. doi: 10.1016/J.JHYDROL.2012.05.052. |
11 | 11. Viggiano, M. et al. (2019) ‘A new spatial modeling and interpolation approach for high-resolution temperature maps combining reanalysis data and ground measurements’, Agricultural and Forest Meteorology, 276–277, p. 107590. doi: 10.1016/J.AGRFORMET.2019.05.021. |