Abstract. Climate change is a long-term problem that is likely to cause extreme temperatures, floods, droughts, intense
tropical cyclones and rising sea levels. In order to determine the direction of the impact of climate change on ecosystems, it
is necessary to determine the main long-term trends of the most important meteorological variables (e.g., air temperature,
its average, maximum and minimum values) to ecosystems, as well as their combined effects. In this study, monthly absolute
maximum temperature trends and abrupt change points of 10 meteorological stations in Karakalpakstan were identified
by applyting Mann-Kendall trend test and Mann-Kendall point change methods, respectively. There is an abrupt change of
annual absolute maximum temperature at 6 meteostations out of 10 during the second decade of XXI century. Significant
increasing trend of annual absolute maximum temperature was observed at all meteostations except Muynak (Z=0.56) and
Shakh-Senem (Z=-0.33) meteostations. According to Mann-Kendall abrupt point change test, average of spatially interpolated
monthly absolute maximum air temperature of all meteostations showed a significant abrupt change in 2014. According to
this result, when the study period is divided into two parts, the average of spatially interpolated monthly absolute maximum
air temperature of all weather stations showed a significant growth trend during the second period (2014 - 2022) compared
to the first period (1975 -
Abstract. Climate change is a long-term problem that is likely to cause extreme temperatures, floods, droughts, intense
tropical cyclones and rising sea levels. In order to determine the direction of the impact of climate change on ecosystems, it
is necessary to determine the main long-term trends of the most important meteorological variables (e.g., air temperature,
its average, maximum and minimum values) to ecosystems, as well as their combined effects. In this study, monthly absolute
maximum temperature trends and abrupt change points of 10 meteorological stations in Karakalpakstan were identified
by applyting Mann-Kendall trend test and Mann-Kendall point change methods, respectively. There is an abrupt change of
annual absolute maximum temperature at 6 meteostations out of 10 during the second decade of XXI century. Significant
increasing trend of annual absolute maximum temperature was observed at all meteostations except Muynak (Z=0.56) and
Shakh-Senem (Z=-0.33) meteostations. According to Mann-Kendall abrupt point change test, average of spatially interpolated
monthly absolute maximum air temperature of all meteostations showed a significant abrupt change in 2014. According to
this result, when the study period is divided into two parts, the average of spatially interpolated monthly absolute maximum
air temperature of all weather stations showed a significant growth trend during the second period (2014 - 2022) compared
to the first period (1975 -
Annotatsiya. Iqlim o’zgarishi ekstremal havo harorati, suv toshqinlari, qurg’oqchilik, shiddatli tropik siklonlar va dengiz
sathining ko’tarilishiga ta’sir qiluvchi uzoq muddatli muammodir. Iqlim o’zgarishining ekotizimga bo’lgan ta’sirining
yo’nalishini aniqlash uchun eng muhim meteorologik o’zgaruvchilarning (masalan - havo harorati, uning o’rtacha,
maksimum va minimum qiymatlari) uzoq yillik o’zgarish tendensiyalarini, shu bilan birgalikda ularning ekotizimga bo’lgan
birgalikdagi ta’sirini aniqlash zarur. Mazkur tadqiqotda Qoraqalpog’istondagi 10 ta meteostansiyada qayd qilingan oylik
maksimal mutlaq havo harorati tendensiyalari va keskin o’zgarish nuqtalari mos ravishda Mann-Kendall tendensiyani
aniqlash va Mann-Kendall keskin o’zgarish nuqtasini aniqlash metodlari orqali aniqlandi. XXI asrning 2-o’n yilligida 10
ta meteostansiyaning 6 tasida yillik maksimal mutlaq havo haroratining keskin o’zgargani aniqlandi. Yillik maksimal
mutlaq havo haroratining sezilarli o’sish tendensiyasi Mo’ynoq (Z=0.56) va Shoh-Sanam (Z=-0.33) meteostansiyalardan
boshqa barcha meteostansiyalarda kuzatildi. Mann-Kendall keskin o’zgarish nuqtasini aniqlash metodiga ko’ra, barcha
meteostansiyalarning o’rtacha fazoviy interpolyatsiya qilingan oylik mutlaq maksimal havo harorati 2014-yilda keskin
o’zgarganligini ko’rsatdi. Mazkur natijaga ko’ra o’rganilish davri ikki qismga bo’linganda, barcha meteostansiyalardagi
oylik mutlaq maksimal havo haroratining fazoviy interpolyatsiya qilingan o’rtacha qiymatlari ikkinchi davrda (2014-2022)
birinchi davrdagiga (1975-2013) qaraganda sezilarli o’sish tendensiyasini ko’rsatdi va ikkinchi davrdagi mazkur o’sish
tendensiyasi Qoraqalpog’istonning Shimoliy-g’arbiy va g’arbiy qismlarida kuzatildi.
Aннотация. Изменение климата — это долгосрочная проблема, которая может вызвать экстремальные
температуры, наводнения, засухи, интенсивные тропические циклоны и повышение уровня моря. Для того чтобы
определить направление воздействия изменения климата на экосистемы, необходимо определить основные
долгосрочные тенденции наиболее важных метеорологических переменных (например, температуры воздуха, ее
средних, максимальных и минимальных значений) для экосистем, а именно: а также их совокупное воздействие. В
этом исследовании тренды месячных максимальных абсолютных температур и точки резкого изменения тем-
пературы на 10 метеорологических станциях в Каракалпакстане были идентифицированы с помощью тестатренда Манна-Кендалла и методов изменения точки Манна-Кендалла соответственно. Во втором десятилетии
XXI века на 6 метеостанциях из 10 происходит резкое изменение годовой максимальной абсолютной темпера-
туры. Значительный тренд увеличения годовой максимальной абсолютной температуры наблюдался на всех
метеостанциях, кроме метеостанций Муйнак (Z=0,56) и Шах-Сенем (Z=-0,33). Согласно тесту резкого изменения
точки Манна-Кендалла, средняя пространственно интерполированная месячная абсолютная максимальная
температура воздуха всех метеостанций показала значительное резкое изменение в 2014 году. Согласно этому
результату, когда период исследования разделен на две части, среднее значение пространственно интерполиро-
ванной месячная абсолютная максимальная температура воздуха всех метеостанций показала значительную
тенденцию роста во втором периоде (2014 – 2022 гг.) по сравнению с первым периодом (1975 – 2013 гг.), причем
это изменение во втором периоде наблюдалось в северо-западном и западном регионах. часть Каракалпакстана.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Eshboyev N.P. | assistant, | TIIAME” National research university. |
2 | Khamidov S.S. | PhD student | 1Research institute of environment and nature conservation technologies, |
3 | Pulatov B.A. | doctor of technical science, director | 1Research institute of environment and nature conservation technologies, |
№ | Name of reference |
---|---|
1 | 1. V. Masson-Delmotte et al., “Climate Change and Land An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems Head of TSU (Operations) IT/Web Manager Senior Administrator,” 2019. Online. Available: www.ipcc.ch |
2 | 2. L. Zhi, “Trend and Abrupt Analysis of Rainfall Change During Last 50 Years in the WeiHe Basin,” Earth Sciences, vol. 4, no. 6, p. 228, 2015, doi: 10.11648/j.earth.20150406.12 |
3 | 3. Key, “State of the Global Climate 2021 WMO Provisional Report.” Online. Available: https://library.wmo.int/ viewer/56294/download?file=State_of_the_Global_Climate_2021.pdf&type=pdf&navigator=1 |
4 | 4. “State of the Global Climate 2022 WMO report.” Online. Available: https://library.wmo.int/viewer/66214/ download?file=Statement_2022.pdf&type=pdf&navigator=1 |
5 | 5. M. Narbayep and V. Pavlova, “The Aral Sea, Central Asian Countries and Climate Change in the 21st Century,” 2022. Online. Available: http://www.unescap.org/kp |
6 | 6. R. Feng, R. Yu, H. Zheng, and M. Gan, “Spatial and temporal variations in extreme temperature in Central Asia,” International Journal of Climatology, vol. 38, pp. e388–e400, Apr. 2018, doi: 10.1002/joc.5379. |
7 | 7. M. Luo et al., “Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia,” International Journal of Climatology, vol. 39, no. 3, pp. 1571–1588, Mar. 2019, doi: 10.1002/joc.5901. |
8 | 8. P. P. Micklin, “Desiccation of the Aral Sea: A Water Management Disaster in the Soviet Union,” 1988. Online. Available: www.sciencemag.org |
9 | 9. M. G. Sam, I. L. Nwaogazie, and C. Ikebude, “Non-Stationary Trend Change Point Pattern Using 24-Hourly Annual Maximum Series (AMS) Precipitation Data,” J Water Resour Prot, vol. 14, no. 08, pp. 592–609, 2022, doi: 10.4236/ jwarp.2022.148031. |
10 | 10. S. Khamidov, Z. Li, M. Nasirova, B. Pulatov, and A. Pulatov, “Assessment of temperature and precipitation trends in Kashkadarya, Uzbekistan,” in E3S Web of Conferences, EDP Sciences, Jan. 2023. doi: 10.1051/e3sconf/202336501005. |
11 | 11. L. Xiong and S. Guo, “Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station,” Hydrological Sciences Journal, vol. 49, no. 1, pp. 99–112, 2004, doi: 10.1623/ hysj.49.1.99.53998. |
12 | 12. Atta-ur-Rahman and M. Dawood, “Spatio statistical analysis of temperature fluctuation using Mann – Kendall and Sen ’ s slope approach,” Clim Dyn, 2016, doi: 10.1007/s00382-016-3110-y. |
13 | 13. M. Gocic and S. Trajkovic, “Analysis of changes in meteorological variables using Mann-Kendall and Sen ’ s slope estimator statistical tests in Serbia,” Glob Planet Change, vol. 100, pp. 172–182, 2013, doi: 10.1016/j.gloplacha.2012.10.014. |
14 | 14. Z. Li, F. L. Zheng, and W. Z. Liu, “Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the Loess Plateau of China,” Agric For Meteorol, vol. 154–155, no. November 2017, 2012, doi: 10.1016/j.agrformet.2011.10.019 |
15 | 15. S. Peng, Y. Ding, Z. Wen, Y. Chen, and Y. Cao, “Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011 – 2100,” Agric For Meteorol, vol. 233, pp. 183–194, 2017, doi: 10.1016/j. agrformet.2016.11.129. |
16 | 16. X. Chen, H. Wang, W. Lyu, and R. Xu, “The Mann-Kendall-Sneyers test to identify the change points of COVID-19 time series in the United States,” BMC Med Res Methodol, vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12874-022-01714-6. |
17 | 17. A. K. Shrestha, A. Thapa, and H. Gautam, “Solar radiation, air temperature, relative humidity, and dew point study: Damak, jhapa, Nepal,” International Journal of Photoenergy, vol. 2019, 2019, doi: 10.1155/2019/8369231. |
18 | 18. U. Makhmudova, S. Khasanov, A. Karimov, and S. Abdurakhmonov, “Evaluation of perennial reference evapotranspiration (ETo) over a typical dryland using satellite images: a case study from Uzbekistan,” Ecohydrology & Hydrobiology, Mar. 2023, doi: 10.1016/j.ecohyd.2023.03.006. |