Ushbu ishda energiya tejamkor oynali bloklardan foydalangan holda passiv quyosh isitish tizimlarini matematik modellashtirishning zamonaviy yondashuvlari tahlil qilingan. Empirik, analitik va sonli usullar (jumladan, oxirgi elementlar usuli hamda ko‘p qatlamli issiqlik uzatish modellashtirish) iqlim xususiyatlarini hisobga olgan holda ko‘rib chiqilgan bo‘lib, bu passiv quyosh isitish tizimlarining tuzilmasi va ishlash tartibini mukammallashtirish imkonini beradi. Alohida e’tibor bino energiya samaradorligini oshirish maqsadida innovatsion, energiya faol oynali bloklarni (inert gaz bilan to‘ldirilgan ko‘p qatlamli shisha paketlar, past emissiyali qoplamalar, faza o‘tish materiallari) joriy etishga qaratilgan. O‘tkazilgan tahlillar natijasida passiv quyosh isitish tizimlarini energiya samarador loyihalarga integratsiya qilish bo‘yicha tavsiyalar ishlab chiqilgan, shuningdek, xalqaro tajribani mintaqaviy iqlim sharoitlariga moslashtirishning asosiy omillari ajratib ko‘rsatilgan. Olingan natijalar passiv quyosh isitish tizimlarining energiya iste’molini kamaytirish va qurilish sohasi ekologik barqarorligini oshirishdagi salmoqli salohiyatini tasdiqlaydi.
В работе проанализированы современные подходы к математическому моделированию пассивных систем солнечного отопления с использованием энергоэффективных оконных блоков. Рассмотрены эмпирические, аналитические и численные методы (включая метод конечных элементов и многослойное моделирование теплопередачи) с учётом климатических особенностей, что позволяет оптимизировать конструктивные решения и режимы эксплуатации пассивных систем солнечного отопления. Особое внимание уделено внедрению инновационных энергоактивных оконных блоков (многослойные стеклопакеты с инертным газом, низкоэмиссионным покрытием, фазопереходными материалами) для повышения энергоэффективности зданий. На основе проведённого анализа разработаны рекомендации по интеграции ПССО в энергоэффективные проекты и выделены ключевые факторы адаптации международного опыта к региональным климатическим условиям. Полученные результаты подтверждают значительный потенциал пассивных систем солнечного отопления в снижении энергопотребления и улучшении экологической устойчивости строительной отрасли.
Ushbu ishda energiya tejamkor oynali bloklardan foydalangan holda passiv quyosh isitish tizimlarini matematik modellashtirishning zamonaviy yondashuvlari tahlil qilingan. Empirik, analitik va sonli usullar (jumladan, oxirgi elementlar usuli hamda ko‘p qatlamli issiqlik uzatish modellashtirish) iqlim xususiyatlarini hisobga olgan holda ko‘rib chiqilgan bo‘lib, bu passiv quyosh isitish tizimlarining tuzilmasi va ishlash tartibini mukammallashtirish imkonini beradi. Alohida e’tibor bino energiya samaradorligini oshirish maqsadida innovatsion, energiya faol oynali bloklarni (inert gaz bilan to‘ldirilgan ko‘p qatlamli shisha paketlar, past emissiyali qoplamalar, faza o‘tish materiallari) joriy etishga qaratilgan. O‘tkazilgan tahlillar natijasida passiv quyosh isitish tizimlarini energiya samarador loyihalarga integratsiya qilish bo‘yicha tavsiyalar ishlab chiqilgan, shuningdek, xalqaro tajribani mintaqaviy iqlim sharoitlariga moslashtirishning asosiy omillari ajratib ko‘rsatilgan. Olingan natijalar passiv quyosh isitish tizimlarining energiya iste’molini kamaytirish va qurilish sohasi ekologik barqarorligini oshirishdagi salmoqli salohiyatini tasdiqlaydi.
In this work, modern approaches to mathematical modeling of passive solar heating systems using energy-saving glass blocks are analyzed. Empirical, analytical, and numerical methods (including the finite element method and multilayer heat transfer modeling) are considered, taking into account climatic features, which will allow improving the structure and operating modes of passive solar heating systems. Special attention is paid to the introduction of innovative, energy-active glass blocks (multilayer glass packages filled with inert gas, low-emission coatings, phase transition materials) in order to increase the energy efficiency of the building. As a result of the analysis, recommendations were developed for the integration of passive solar heating systems into energy-efficient projects, and the main factors for adapting international experience to regional climatic conditions were identified. The obtained results confirm the significant potential of passive solar heating systems in reducing energy consumption and increasing the environmental sustainability of the construction industry.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Avezova N.R. | DSc | Farg’ona politexnika instituti |
2 | Dexkonova M.X. | Kichik ilmiy xodim | Qayta tiklanuvchi energiya manbalari milliy ilmiy-tadqiqot instituti |
№ | Name of reference |
---|---|
1 | 1. R.R. Avezov, N.R. Avezova, N.A. Matchanov, Sh.I. Suleimanov, R.D. Abdukadirova, History and State of Solar Engineering in Uzbekistan// Applied Solar Energy, 2012, Vol. 48, No. 1, pp. 14–19. |
2 | 2. Авезов Р.Р., Орлов А.Ю. Солнечные системы отопления и горячего водоснабжения. Ташкент: Фан, 1988. 288 с. |
3 | 3. Janssen, H., Blocken, B., & Carmeliet, J. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. International Journal of Heat and Mass Transfer, 2007.50, 1128-1140.https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.048. |
4 | 4. Gerlich, V. Modelling of Heat Transfer in Buildings., 2011 244-248. https://doi.org/10.7148/2011-0244-0248. orientation. Applied Thermal Engineering, 2017. 112, 15-24. https://doi.org/10.1016/j.applthermaleng.2016.10.068. |
5 | 5. Basok, B.I.; Nakorchevskii, A.I.; Goncharuk, S.M.; Kuzhel, L.N. Experimental Investigations of Heat Transfer Through Multiple Glass Units with Account for the Action of Exterior Factors. J. Eng. Phys. Thermophys. 2017, 90, 88–94. |
6 | 6. Брызгалин Владислав Викторович, Соловьев Алексей Кириллович Использование пассивных систем солнечного отопления как элемента пассивного дома // Вестник МГСУ. 2018. №4 (115). URL: https://cyberleninka.ru/article/n/ispolzovanie-passivnyh-sistem-solnechnogo-otopleniya-kak-elementa-passivnogo-doma. |
7 | 7. Авезов P.P., Бабакулов К.Б. Метод теплотехнического расчета пассивной системы солнечного обогрева (нестационарный режим). -Гелиотехника, 1982, № 5, с.11-18 |
8 | 8. Krivoshein, Y. O., Tolstykh, A. V., Tsvetkov, N. A., & Khutornoy, A. N. Mathematical model for calculating solar radiation on horizontal and inclined surfaces for the conditions of Yakutsk. IOP Conference Series: Earth and Environmental Science, 2020, 408, 012002. doi:10.1088/1755-1315/408/1/012002 |
9 | 9. Misiopecki, C., Bouquin, M., Gustavsen, A., & Jelle, B. P. Thermal modeling and investigation of the most energy-efficient window position. Energy and Buildings, 2018, 158, 1079–1086. doi: 10.1016/j.enbuild.2017.10 |
10 | 10. Pilipenko, A., & Petrov, S. Computer Simulation and Modelling System of Non-Stationary Heat Exchange Processes. MATEC Web of Conferences, 2018, 155, 01036. doi:10.1051/matecconf/2018155 |
11 | 11. Tian, Z.; Zhang, X.; Jin, X.; Zhou, X.; Shi, X. Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy Build. 2018, 158, 1306–1316. |
12 | 12. Nguyen A, Reiter S, Rigo P.;1; A review on simulation-based optimization methods applied to building performance analysis. 2014:1043-58. |
13 | 13. Crawley, Drury B., et al.;1; «EnergyPlus: creating a new-generation building energy simulation program." Energy and buildings 33.4, 2001. 319-331. |
14 | 14. Hirsch, James “eQUEST”. DOE2. com. http://www. doe2. com/equest, (Accessed 26.05.2016). |
15 | 15. DesignBuilder. https://www.designbuilder.co.uk. /software/product-overview (Accessed 26.05.2016). |
16 | 16. Гражданкин А.А., Иванченко В.Т., Письменский А.В. Математическое моделирование теплопередачи через ограждающую конструкцию // Вестник БГТУ имени В. Г. 2020. №6. |
17 | 17. Зима А. Г. Характеристики окна, влияющие на повышение его теплоизоляционных свойств // Инженерно-строительный вестник Прикаспия. 2020. №3 (33). |
18 | 18. Cuce E. Riffat S.B. A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev. 2015, 41, 695–714 |
19 | 19. Подковырина К.А., Подковырин В.С. Светопрозрачные ограждающие конструкции (методы снижения тепловых потерь и мировой опыт применения) // Архитектура и дизайн. 2018. № 1. С. 46-51. doi: 10.7256/2585-7789.2018.1.27981 |
20 | 20. Н.Р. Авезова, A.М. Мирзабаев, К.А. Самиев, Н.Н. Далмурадова, М.Х Дехконова. Краткий обзор инженерных подходов по разработке энергоактивых оконных блоков для пассивных зданий// «Проблемы информатики и энергетики» 2024/3 c-228-248 |
21 | 21. Павленко А.М., Садко К. Оценка численных методов прогнозирования энергоэффективности окон// Энергии. 2023; 16(3):1425. https://doi.org/10.3390/en16031425 |
22 | 22. Jean-Michel Dussault, Louis Gosselin, Tigran Galstian. Assessment of building energy efficiency with smart window glazing curtain walls//International Workshop smart materials, structures & NDT in aerospace Conference NDT in Canada 2011. 2 - 4 |
23 | 23. Земцов Виктор Андреевич, Гагарина Елена Владимировна Расчетно-экспериментальный метод определения общего коэффициента пропускания света оконными блоками // Academia. Архитектура и строительство. 2010. №3. |
24 | 24. Nourozi B, Ploskić A, Chen Y, Ning-Wei Chiu J, Wang Q, Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings, Renewable Energy 2020, doi: https://doi.org/10.1016/j.renene.2020.10.043 |
25 | 25. Basok, B. I., Davydenko, B. V., Isaev, S. A., Goncharuk, S. M., & Kuzhel’, L. N. Numerical Modeling of Heat Transfer Through a Triple-Pane Window. Journal of Engineering Physics and Thermophysics-2016, 89(5), 1277–1283. doi:10.1007/s10891-016-1492-7 |
26 | 26. Kamal A.R. Ismail, Taynara G.S. Lago, Fatima A.M. Lino, Mário Ventura Mondlane, Mavd P.R. Teles, Experimental investigation on ventilated window with reflective film and development of correlations// Solar Energy, Volume 230, Pages 421-434, 2021. |
27 | 27. Avezov, R.R. Temperature field and heat transfer through partly ray-absorbing translucent enclosure of insolation passive systems for solar heating// Geliotekhnika, (3), pp. 54-57. 2003 |
28 | 28. R. R. Avezov, The influence of heat exchange conditions on the temperature regimes and heat transfer of a partially radiation-absorbing layer of complex transparent enclosures in passive solar heating systems// Geliotekhnika, no. 4, pp. 32-38, 2004. |
29 | 29. R. R. Avezov and K. A. Samiev, Methodology for calculating the optical characteristics of double- and triple-layer transparent enclosures in passive solar heating// Geliotekhnika, no. 3, pp. 71-78, 2006. |
30 | 30. Avezova, N.R., Avezov, R.R., Samiev, K.A. Modeling the stationary thermal conditions of a premises heated by a passive insolation system containing a three-layer translucent shield with a partially ray-absorbing film on its inner surface. Applied Solar Energy 2014 50 (1), pp. 30-34. |
31 | 31. Avezova, N.R., Avezov, R.R., Rashidov, Y.K., Kasimov, F.S. The fuel-replacement factor of insolation passive solar-heating systems with a three-layer translucent shield with a partially ray absorbing transforming film on the inside Applied Solar Energy 2014, 50 (4), pp. 278-281 |
32 | 32. К. А. Самиев. “Повышение эффективности сложных светопрозрачных ограждений с частично лучепоглощающим слоем инсоляционных пассивных систем солнечного отопления” автореферат диссертационная работа. Ташкент – 2010. С-55. |
33 | 33. Avezova, N.R., Avezov, R.R., Rashidov, Y.K., Samiev, K.A. Model-based analysis of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield Applied Solar Energy 2014. 50 (3), pp. 184-187. |
34 | 34. Avezov, R.R., Samiev, K.A. Effect of the placement of a partially radiation-absorbing layer on the optical and thermotechnical characteristics of a three-layer translucent screen of passive insolation solar-heating systems// Applied Solar Energy 2006. 42 (4), pp. 11-14. |
35 | 35. Самиев К.А. Математическое моделирование теплового режима инсоляционного пассивного система солнечного отопления с трехслойными вентилируемыми светопрозрачными ограждениями// Гелиотехника. – 2009 №4. С.121-126. |
36 | 36. Avezov, R.R., Samiev, K.A. Technique for calculation of optical characteristics of two- And three-layer light transmissive screens in insolation passive solar heating systems Applied Solar Energy 2006, 42 (3), pp. 45-49.37. Самиев К.А. Тепловая эффективность пассивных систем солнечного отопления// авторереферат докторская диссертационная работа. Ташкент – 2023. с.56 |
37 | 37. Самиев К.А. Тепловая эффективность пассивных систем солнечного отопления// авторереферат докторская диссертационная работа. Ташкент – 2023. с.56 |
38 | 38. N.R. Avezova, E.Yu Rakhimov, NN Dalmuradova, MB Shermatova. Adjustments to the indicators of the heating and cooling degree-days for regions of the Republic of Uzbekistan// 2-nd International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2021), PP. 278-288. |
39 | 39. Murat Kenisarin, Kamola Kenisarina. Energy saving potential in the residential sector of Uzbekistan. // Energy 32 (2007) 1319–1325. |
40 | 40. КМК 2.01.04-97. Пособие по проектированию новых энергосберегающих решений по строительной теплотехнике. Строительная теплотехника. 01.01.2012 г. |
41 | 41. Н.Р. Авезова, Э.Ю. Рахимов, А.У. Вохидов, М.Х. Дехконова. Методика расчета тепловых потерь через трехслойные светопрозрачные ограждения зданий// международной научно-практической конференции “Подготовка кадров по солнечной энергетике: технологии, методы и инструменты” 20 сентября 2024 года, г. Фергана |
42 | 42. ERA5-Land hourly data from 1950 to present. https://cds-beta.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview |
43 | 43. Дехконова М.Х.“Программа для определения значения тепловых потерь в трехслойных энергоактивных оконных блоков для пассивных зданий”// ДГУ № 40083.14.06.2024 |
44 | 44. Nilufar Avezova, Akrom Mirzabaev, Ergashali Rakhimov, Nargiza Dalmuradova, Makhliyo Dekhkonova. Passive project strategy: Givoni diagram//Journal of Construction and Engineering Technology JCET: volume 2, issue 2, 2024. |
45 | 45. ШНК 2.08.08-22. Пассивные здания: жилые. https://mc.uz/uploads/mcuz_999401255275.pdf |