15

Mazkur maqolada sheelit konsentratlarini qayta ishlash jarayonlari – kislotali parchalash, ko‘machlash va tanlab eritish bosqichlari tahlil qilingan. Xlorid kislotasi bilan parchalashda volfram kislotasining bevosita cho‘kishi natijasida texnologik jarayon soddalashadi. Soda va selitra aralashmasida 800–900 °C da olib borilgan ko‘machlash jarayoni volframning natriy volframat ko‘rinishiga o‘tishini 98–99 % gacha ta’minlaydi. Tanlab eritish jarayonining 80–90 °C da olib borilishi esa volframni eritmaga to‘liq ajratib olish imkonini beradi. Olingan natijalar volfram boyitmalarini qayta ishlashning samarali, tejamkor va ekologik jihatdan maqbul texnologiyasini ishlab chiqish uchun ilmiy asos yaratadi.

  • Read count 15
  • Date of publication 27-12-2025
  • Main LanguageO'zbek
  • Pages78-83
Ўзбек

Mazkur maqolada sheelit konsentratlarini qayta ishlash jarayonlari – kislotali parchalash, ko‘machlash va tanlab eritish bosqichlari tahlil qilingan. Xlorid kislotasi bilan parchalashda volfram kislotasining bevosita cho‘kishi natijasida texnologik jarayon soddalashadi. Soda va selitra aralashmasida 800–900 °C da olib borilgan ko‘machlash jarayoni volframning natriy volframat ko‘rinishiga o‘tishini 98–99 % gacha ta’minlaydi. Tanlab eritish jarayonining 80–90 °C da olib borilishi esa volframni eritmaga to‘liq ajratib olish imkonini beradi. Olingan natijalar volfram boyitmalarini qayta ishlashning samarali, tejamkor va ekologik jihatdan maqbul texnologiyasini ishlab chiqish uchun ilmiy asos yaratadi.

Русский

В статье проведён анализ процессов переработки шеелитовых концентратов, включая кислотное разложение, спекание и селективное выщелачивание. Показано, что при обработке концентрированной соляной кислотой вольфрамовая кислота осаждается напрямую, что упрощает технологическую схему. Спекание при 800–900 °C в смеси соды и селитры обеспечивает переход вольфрама в раствор в виде натриевого вольфрамата с извлечением до 98–99 %. Селективное выщелачивание при 80–90 °C способствует полному переводу вольфрама в раствор. Полученные результаты позволяют рекомендовать предложенную технологическую схему как эффективный и экономичный метод переработки вольфрамсодержащих концентратов.

English

This article analyzes the processing stages of scheelite concentrates, including acid decomposition, roasting (sintering), and selective leaching. It is shown that direct precipitation of tungstic acid during hydrochloric acid decomposition simplifies the technological process. Roasting with soda and nitrate at 800–900 °C ensures the conversion of tungsten into sodium tungstate with an extraction rate of 98–99 %. Selective leaching at 80–90 °C allows nearly complete transfer of tungsten into the solution. The obtained results demonstrate that the proposed technological scheme is an efficient, cost-effective, and environmentally sound method for processing tungsten concentrates.

Name of reference
1 [1] Никифоров, К. А., & Золтоев, Е. В. (1986). Получение искусственного вольфрамового сырья из низкосортных гюбнеритовых промпродуктов обогатительной фабрики. Комплексное использование минерального сырья, (6), 62–65.
2 [2] Лагов, Б. С., & Башлыкова, Т. В. (2002). Научные основы и практика разведки и переработки руд и техногенного сырья с извлечением благородных металлов. В Трудах международной научно-технической конференции (12–15 ноября 2002 г., ч. 3, сс. 54–59). Екатеринбург: Уральская Государственная Горно-Геологическая Академия.
3 [3] Туробов, Ш. Н., Боймуродов, Н. А., Хужакулов, А. М., & Султонов, Ш. А. (2025). Основные принципы процесса аппаратного выделения вольфрама в автоклавах в металлургической промышленности. Universum: технические науки, 2(3(132)), 15–20.
4 [4] Хасанов, А. А., Туробов, Ш. Н., Боймуродов, Н. А., & Хужакулов, А. М. (2024). Современные методы обогащения вольфрамовых руд для повышения эффективности добычи. Universum: технические науки, 2(10(127)), 24–27.
5 [5] Шодиев, А., Боймуродов, Н., Хужакулов, А., Равшанов, А., & Нарзуллаев, М. (2024). Исследование и обоснование технологии получения полуфабрикатов и вольфрама в металлическом виде из промышленных отходов. Молодые ученые, 2(1), 107–112.
6 [6] Пирматов, Э. А., Шодиев, А. Н. У., & Боймуродов, Н. А. (2023). Изучение растворимых форм вольфрама и условий кристаллизации шеелита и вольфрамита. Universum: технические науки, (11-2(116)), 15–19.
7 [7] Туробов, Ш. Н., Боймуродов, Н. А., & Хужакулов, А. М. (2025). Анализ геолого-минералогических и экономических потенциалов для дальнейшей разработки вольфрамовых руд месторождения Ингичка. Universum: технические науки, 7(4(133)), 26–30.
8 [8] Gürmen, S., Tımur, S., Arslan, C., & Duman, I. (1999). Acidic leaching of scheelite concentrate and production of hetero-poly-tungstate salt. Hydrometallurgy, 51, 227–238. https://doi.org/10.1016/S0304-386X(98)00080-2
9 [9] Orefice, M., et al. (2021). Solvometallurgical process for the recovery of tungsten from scheelite. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.1c03872
10 [10] Li, J., et al. (2020). Sustainable and efficient recovery of tungsten from scheelite-wolframite via sulfuric/phosphoric acid systems. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.0c04216
11 [11] Alguacil, F. J., et al. (2025). Strategies for the recovery of tungsten from wolframite and scheelite. Metals, 15(8), 819. https://doi.org/10.3390/met15080819
12 [12] Hasanov, A., Vokhidov, B., Babaev, M., Mamaraimov, G., & Yandashev, A. (2024). New technologies for processing tailings of a copper processing plant for the extraction of platinoids. Acta Innovations, 52, 51–59.
13 [13] Khasanov, A. S., & Tolibov, B. I. (2018). Feasibility of sulfide material oxidation in intense roasting furnace. Gornyi Zhurnal, 85–89.
14 [14] Khasanov, A. S., & Atakhanov, A. S. (2003). Rise of complex processing of copper and zinc raw materials at Almalyk Mining and Metallurgical Works. Tsvetnye Metally, 33–35.
15 [15] Khasanov, A. S., Sanakulov, K. S., & Atakhanov, A. S. (2003). Process flow sheet of complex processing of slag from Almalyk mining-and-metallurgical unit. Izvestiya Vysshikh Uchebnykh Zavedeniy Tsvetnaya Metallurgiya, 9–12.
16 [16] Khojakulov, A., Ruziyev, U., Boymurodov, N., Shernazarov, I., Mashaev, E., & Shoyimova, K. (2024). Research and determination of parameters for extracting valuable components from technological waste. BIO Web of Conferences, 149, 01049. EDP Sciences.
17 [17] Shodiev, A., Boymurodov, N., & Ravshanov, A. (2023). Study of the technology for extracting tungsten in the form of a semi-finished product and metallic form from industrial waste. Sanoatda raqamli texnologiyalar / Цифровые технологии в промышленности, 1(2), 87–91.
18 [18] Xasanov, A. S., Boymurodov, N. A., & Xo‘jakulov, A. M. (2025). Metallurgiya sanoati chiqindilari tarkibidan mass-spektrometrda volframni ajralishi metodikasi ilmiy tahlili. International Journal of Advanced Technology and Natural Sciences, 6(1), 60–67.
19 [19] Turobov, S. N., Boymurodov, N. A., & Xo‘jakulov, A. M. (2024). Texnogen chiqindilardan volframni chuqur boyitish texnologik usullari va samaradorligini tadqiq qilish. Sanoatda raqamli texnologiyalar, 2(4-1), 26–30. https://doi.org/10.70769/3030-3214.SRT.2.4-1.2024.12
Waiting