Рассматривается подходы к решению оптимизационной задачи и решение нечеткой многокритериальной задачи оптимизации в условиях риска. для оценки рисков в нечетких условиях предлагается дополнить систему ограничений стандартной задачи принятия решений набором ограничений по возможным потерям, а именно, для избранных сценариев построить модель их последствий (ущербов) как функций управляющих параметров и накладывать экспертные ограничения по приемлемому уровню относительного ущерба для каждого сценария.
Хатарлар шароитида оптималлаштиришнинг ноаниқ кўп мезонли масалаларини ечиш ва оптималлаштириш масалаларини ечишга бўлган ѐндашувлар кўриб чиқилган. ноаниқ шароитларда хатарларни баҳолаш учун қарор қабул қилишнинг стандарт масалаларидаги чекланишлар тизимини бўлиши мумкин бўлган йўқотишлар тўплами билан тўлдириш, хусусан, танланган сценарийлар учун уларнинг оқибатлари (йўқотишлари) моделини бошқарилувчи параметрларнинг функциялари каби қуриш ҳамда ҳар бир сценарий учун йўқотишларга нисбатан мумкин бўлган даражадаги экспертли чекланишларни қўйиш таклиф этилган.
Рассматривается подходы к решению оптимизационной задачи и решение нечеткой многокритериальной задачи оптимизации в условиях риска. для оценки рисков в нечетких условиях предлагается дополнить систему ограничений стандартной задачи принятия решений набором ограничений по возможным потерям, а именно, для избранных сценариев построить модель их последствий (ущербов) как функций управляющих параметров и накладывать экспертные ограничения по приемлемому уровню относительного ущерба для каждого сценария.
Approaches to solving the optimization problem and solving a fuzzy multicriteria optimization problem under risk conditions are considered. To assess risks in fuzzy conditions, it is proposed to supplement the system of constraints of a standard decision-making task with a set of restrictions on possible losses, namely, for selected scenarios, to build a model of their consequences (damages) as functions of control parameters and impose expert limitations on an acceptable level of relative damage for each scenario
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Bekmuratov T.F. | Research and Innovation Center ICT at the Tashkent University of Information Technologies named after Muhammad al-Khorezmi. E-mail: bek.tulkun@yandex.ru; | TUIT |
2 | Mukhamedieva D.. | Research and Innovation Center ICT at the Tashkent University of Information Technologies named after Muhammad al-Khorezmi. E-mail: dilnoz134@rambler.ru | TUIT |
№ | Name of reference |
---|---|
1 | 1. R.A. Aliyev, R.R. Aliev. The theory of intelligent systems and its application. - Baku, Chashyogly Publishing House, 2001. - 720 p. 2. Baeva N.B, Bondarenko, Yu.V. Fundamentals of the Theory and Computational Schemes of Vector Optimization. 3. Fidler M., Nedoma J., Ramik J., Ron I., Zimmermann K. Problems of linear optimization with inaccurate data - M.; Izhevsk: Computer Institute, Issled. : Regular. and chaos. dynamics, 2008. 286 p. 4. Liu B. Theory and practice of indefinite programming - M.: BINOM. Lab Knowledge, 2005. - 416 p. 5. Malyshev V. A., Piyavsky B. S., Piyavsky S. A. The decision-making method in terms of the variety of ways of accounting for uncertainties, Izv. RAS. Theory and control systems. 2010. - № 1. -C. 46-61. 6. Nogin VD, Edgeworth-Pareto Principle and the relative importance of criteria in the case of a fuzzy preference relation // Zh. calculate mathematics and mat. physics. 2003. - Vol. 43, No. 11. - P. 1666-1676. 7. Zadeh L. A. Fuzzy Sets // Information and Control. 1965.-Vol. 8, No. 3. -P. 338-353. 8. Vilkas E.Y., Myminas E.Z. Solutions: theory, information, modeling. M .: Radio and communication, 1981. 328 p.9. Dubois D., Prade H. Fuzzy sets and systems. Theory and applications. New York: Asad. Press, 1980. XVIII. 344 p. 9. Tanaka Hideo, Asai Kiyaii. Fuzzy linear programming based on fuzzy functions //Bull. Univ. Osaka Prefect. 1980. Vol. 29. № 2. P. 113 – 125. 10.Rotshtein, A.P., Fuzzy Multi-Criteria Analysis of Options Using Paired Comparisons, Izv. RAS. Theory and control systems. - 2001. № 3. - p. 150-154. 11.Rotshtein A. P. The Fuzzy Multicriteria Choice of Alternatives: the Worst Case Method // Izv. RAS. Theory and control systems. 2009. - № 3. - p. 51-55 12. Negoita C. The current interest in fuzzy optimization // Fuzzy Sets and Systems. 1981. Vol. 6. № 3. P. 261 – 269. 13. Hannan E. Linear programming with multiple fuzzy goals // Fuzzy Sets and Systems. 1981. Vol. 6. № 3. P. 235 – 489. 14.Borisov A.N., Popov V.A. One class of multi-criteria optimization problems in the linguistic setting of criteria // Methods and models of management and control. Riga, 1979. pp. 56 - 61. 15.Chernorutsky I. G. Methods of optimization and decision-making. -SPb .: Lan, 2001.-384 p.17. Xu R., Li C.Multidimensional least-squares fitting with a fuzzy model // Fuzzy Sets and Systems. 2001. - Vol. 119, №. 2. - P. 215- 223. 16. Tong R., Bonissone P. A linguistic approach to decision-making with fuzzy sets // IEEE Trans. Syst. Mang. and Cybern. 1980. Vol. 10. № 11. P. 716 – 723. 17. Yazenin A.V. The problem of vector optimization with fuzzy coefficients of importance criteria // Mathematical methods of optimization and control in complex systems. Kalinin, 1981. pp. 38 - 51. 18. Shchitov I. N. Introduction to optimization methods. - M.: Higher. school, 2008. 204 p.21. Ramesh J. A procedure for multiple-aspect decision making using fuzzy sets // Int. J. Syst. Sci. 1977. Vol. 8. № 1. P. 1 – 7. 19. Yager R. Multiple objective decision-making using fuzzy sets // Int. J. ManMach. Sfud. 1979. Vol. 9. № 4. P. 375 382. 20.Borisov A.N., Krumberg O.A. Decision analysis when choosing technological objects // Decision making methods in conditions of uncertainty. Riga, 1980. No. 7. P. 126 - 134.24. Yager R. Fuzzy Sets, probabilistic and decision // J. Cybern. 1980. V. 10. № 1 - 3. P.1 - 18. |